
EECS 442 Discussion 5
Backpropagation

Discussion Agenda

● Neural Network
● Layers

○ Fully Connected
○ ReLU

● Computational Graphs
○ Forward and Backward Passes
○ Chain Rule

● Backpropagation
● Optimizer

○ SGD with Momentum

Neural Networks

x h s

Inputs Hidden
Layer

Outputs

W1 W2

f(x) = W2 h(W1x + b1) + b2

● Models that can learn varying features of data by approximating almost any nonlinear
function

Fully Connected Layer
For regular neural networks, the most common layer type is the fully-connected
layer in which neurons between two adjacent layers are fully pairwise connected,
but neurons within a single layer share no connections.

The weight dimension is (3, 4) in the right example.

fully connected layer CS231n Convolutional Neural Networks for Visual Recognition

https://cs231n.github.io/neural-networks-1/

Rectified Linear Unit (ReLU)

● Activation function: introduces non-linearity
● Thresholded at zero
● f(x) = max(0, x)
● Accelerates the convergence of Stochastic Gradient Descent (SGD)
● Simple to implement and fast to compute

CS231n Convolutional Neural Networks for Visual Recognition

https://cs231n.github.io/neural-networks-1/

Network Structure for PS4

Computational Graphs

● Computing gradients is infeasible for complex models
○ Need to analytically derive all gradients

● Instead: modularize computation!

Forward and Backward Passes

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

CS231n Convolutional Neural Networks for Visual Recognition

https://cs231n.github.io/neural-networks-1/

Backpropagation:
Simple Example

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

𝑞 = 𝑥 + 𝑦 𝑓 = 𝑞 ⋅ 𝑧
2. Backward pass: Compute derivatives

Want: 𝜕𝑓 , 𝜕𝑓 , 𝜕𝑓
𝜕𝑥 𝜕𝑦 𝜕𝑧

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

𝑞 = 𝑥 + 𝑦 𝑓 = 𝑞 ⋅ 𝑧
2. Backward pass: Compute derivatives

Want: 𝜕𝑓 , 𝜕𝑓 , 𝜕𝑓
𝜕𝑥 𝜕𝑦 𝜕𝑧

𝜕𝑓
𝜕𝑓

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

𝑞 = 𝑥 + 𝑦 𝑓 = 𝑞 ⋅ 𝑧
2. Backward pass: Compute derivatives

Want: 𝜕𝑓 , 𝜕𝑓 , 𝜕𝑓

𝜕𝑓
𝜕𝑓

𝜕𝑦 𝜕𝑧
EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

𝜕𝑓

𝜕𝑦 𝜕𝑧
𝜕𝑧

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

𝑞 = 𝑥 + 𝑦 𝑓 = 𝑞 ⋅ 𝑧
2. Backward pass: Compute derivatives

Want: 𝜕𝑓 , 𝜕𝑓 , 𝜕𝑓

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

𝜕𝑧
𝜕𝑓 = 𝑞

Backpropagation:
Simple Example

2. Backward pass: Compute derivatives

Want: 𝜕𝑓 , 𝜕𝑓 , 𝜕𝑓

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

𝑞 = 𝑥 + 𝑦

𝜕𝑦 𝜕𝑧

𝑓 = 𝑞 ⋅ 𝑧

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

𝑞 = 𝑥 + 𝑦 𝑓 = 𝑞 ⋅ 𝑧
2. Backward pass: Compute derivatives

Want: 𝜕𝑓 , 𝜕𝑓 , 𝜕𝑓

𝜕𝑓
𝜕𝑞

𝜕𝑦 𝜕𝑧
EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

2. Backward pass: Compute derivatives

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

𝑞 = 𝑥 + 𝑦

𝜕𝑓 , 𝜕𝑓 , 𝜕𝑓Want:
𝜕𝑥 𝜕𝑦 𝜕𝑧

𝑓 = 𝑞 ⋅ 𝑧
𝜕𝑞
𝜕𝑓 = 𝑧

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

𝑞 = 𝑥 + 𝑦 𝑓 = 𝑞 ⋅ 𝑧
2. Backward pass: Compute derivatives

Want: 𝜕𝑓 , 𝜕𝑓 , 𝜕𝑓
𝜕𝑥 𝜕𝑦 𝜕𝑧

𝜕𝑓
𝜕𝑦

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

Chain Rule

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

𝑞 = 𝑥 + 𝑦 𝑓 = 𝑞 ⋅ 𝑧
2. Backward pass: Compute derivatives

Want: 𝜕𝑓 , 𝜕𝑓 , 𝜕𝑓
𝜕𝑥 𝜕𝑦 𝜕𝑧

𝜕𝑓 𝜕𝑞 𝜕𝑓
𝜕𝑦 = 𝜕𝑦 𝜕𝑞

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

2. Backward pass: Compute derivatives

Want:

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

, ,
𝜕𝑓 𝜕𝑓 𝜕𝑓
𝜕𝑥 𝜕𝑦 𝜕𝑧

𝑞 = 𝑥 + 𝑦 𝑓 = 𝑞 ⋅ 𝑧 𝜕𝑓 𝜕𝑞 𝜕𝑓
𝜕𝑦 = 𝜕𝑦 𝜕𝑞

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

2. Backward pass: Compute derivatives

Want:

Chain Rule

UpstreamDownstream Local

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

𝜕𝑓 , 𝜕𝑓 , 𝜕𝑓

𝑞 = 𝑥 + 𝑦 𝑓 = 𝑞 ⋅ 𝑧 𝜕𝑓 𝜕𝑞 𝜕𝑓
𝜕𝑦 = 𝜕𝑦 𝜕𝑞

𝜕𝑞

𝜕𝑦 𝜕𝑧 Gradient

𝜕𝑦 = 1

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

2. Backward pass: Compute derivatives

Want:

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

, ,
𝜕𝑓 𝜕𝑓 𝜕𝑓
𝜕𝑥 𝜕𝑦 𝜕𝑧

𝑞 = 𝑥 + 𝑦 𝑓 = 𝑞 ⋅ 𝑧 𝜕𝑓 𝜕𝑞 𝜕𝑓
𝜕𝑦 = 𝜕𝑦 𝜕𝑞

𝜕𝑞
𝜕𝑦 = 1

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

2. Backward pass: Compute derivatives

Want:

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

, ,
𝜕𝑓 𝜕𝑓 𝜕𝑓
𝜕𝑥 𝜕𝑦 𝜕𝑧

𝑞 = 𝑥 + 𝑦 𝑓 = 𝑞 ⋅ 𝑧 𝜕𝑓 𝜕𝑞 𝜕𝑓
𝜕𝑥 = 𝜕𝑥 𝜕𝑞

𝜕𝑞
𝜕𝑥 = 1

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation:
Simple Example

2. Backward pass: Compute derivatives

Want:

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

, ,
𝜕𝑓 𝜕𝑓 𝜕𝑓
𝜕𝑥 𝜕𝑦 𝜕𝑧

𝑞 = 𝑥 + 𝑦 𝑓 = 𝑞 ⋅ 𝑧 𝜕𝑓 𝜕𝑞 𝜕𝑓
𝜕𝑥 = 𝜕𝑥 𝜕𝑞

𝜕𝑞
𝜕𝑥 = 1

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backpropagation of some common operations

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Practice 1

CS231n Convolutional Neural Networks for Visual Recognition

https://cs231n.github.io/neural-networks-1/

Practice 1

CS231n Convolutional Neural Networks for Visual Recognition

https://cs231n.github.io/neural-networks-1/

𝑓 𝑥,𝑤 =
1

1 + 𝑒! "!#!$""#"$"#Another Example

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Forward pass: Compute outputs

𝑓 𝑥,𝑤 =
1

1 + 𝑒! "!#!$""#"$"#Another Example

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Base
Case

Backward pass: Compute gradients

𝑓 𝑥,𝑤 =
1

1 + 𝑒! "!#!$""#"$"#Another Example

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backward pass: Compute gradients

Upstream
Gradient

Local Gradient

Downstream
Gradient

𝑓 𝑥,𝑤 =
1

1 + 𝑒! "!#!$""#"$"#Another Example

𝜕
𝜕𝑥

1
𝑥 = −

1
𝑥%

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backward pass: Compute gradients

Upstrea
m

Gradient

Local Gradient

Downstream
Gradient

𝑓 𝑥,𝑤 =
1

1 + 𝑒! "!#!$""#"$"#Another Example

𝜕
𝜕𝑥

𝑥 + 1 = 1

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backward pass: Compute gradients

Upstream
Gradient

Local Gradient

Downstream
Gradient

𝑓 𝑥,𝑤 =
1

1 + 𝑒! "!#!$""#"$"#Another Example

𝜕
𝜕𝑥

𝑒# = 𝑒#

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backward pass: Compute gradients

Upstream
Gradient

Local Gradient

Downstream
Gradient

𝑓 𝑥,𝑤 =
1

1 + 𝑒! "!#!$""#"$"#Another Example

𝜕
𝜕𝑥

−𝑥 = −1

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backward pass: Compute gradients

Local Gradient

Downstream
Gradient

Upstream
Gradient

𝑓 𝑥,𝑤 =
1

1 + 𝑒! "!#!$""#"$"#Another Example

𝜕
𝜕𝑥 𝑥 + 𝑦 = 1

𝜕
𝜕𝑦

𝑥 + 𝑦 = 1

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backward pass: Compute gradients

Local Gradient

Downstream
Gradient

Upstream
Gradient

𝑓 𝑥,𝑤 =
1

1 + 𝑒! "!#!$""#"$"#Another Example

𝜕
𝜕𝑥 𝑥 + 𝑦 = 1

𝜕
𝜕𝑦

𝑥 + 𝑦 = 1

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backward pass: Compute gradients

Local Gradient

Downstream Gradient Upstream
Gradient

𝑓 𝑥,𝑤 =
1

1 + 𝑒! "!#!$""#"$"#Another Example

𝜕
𝜕𝑥

𝑥𝑦 = 𝑦
𝜕
𝜕𝑦

𝑥𝑦 = 𝑥

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Backward pass: Compute gradients

Local Gradient

Downstream Gradient Upstream
Gradient

𝑓 𝑥,𝑤 =
1

1 + 𝑒! "!#!$""#"$"#Another Example

𝜕
𝜕𝑥

𝑥𝑦 = 𝑦
𝜕
𝜕𝑦

𝑥𝑦 = 𝑥

EECS 598: Deep Learning for Computer Vision

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

SGD + Momentum

Stochastic Gradient Descent

Select training samples instead of looping over all training examples

where B is a minibatch: a random subset of examples

Momentum

SGD with Momentum has the following update rule

where beta is a scalar in range [0,1], dW is the gradient of the network parameter W, v is
velocity initialized as all zeros.

No Momentum

Source: https://distill.pub/2017/momentum

https://distill.pub/2017/momentum

With Momentum

Source: https://distill.pub/2017/momentum

https://distill.pub/2017/momentum

