Discussion 3 — Pyramids & FFT

EECS 442 - Fall 2023



2D Fourier Transform
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Pairs of Fourier Transforms
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Figure 2.6: Some two-dimensional Fourier transform pairs. Images are 64 x 64 pixels. The
(5,0), (10,7), (11,—15). The last two examples show
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waves are cos with frequencies (1,2),
the sum of two waves and the product.

X(m) = Y550 @(n)[cos(2mnm/N) — isin(2mnm/N)] X, (m) = |X(m)| = VX real (M)? + X inag (M)?

*X(m): m~th output of DFT, e.g., X(0), X(1), ..., X(m) X4(m) = tan-L (leag( m) )
*x(n): Input samples, e.g., x(0), x(1), ..., x(n) Xireal (M)
*i: Imaginary numbers line f(m)= %

*N: length of Input



Reconstruct an image, low frequency to high
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Reconstruct an image, low frequency to high
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Fourier Matching Game
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Match each image (a-h) with its corresponding Fourier transform magnitude (1-8)



Convolution Theorem of Fourier Transform

2D Fourier transform is separable (just like Gaussian)
* Computable in O(nlogn) (using FFT)

* Convolution Theorem: convolution is pointwise multiplication in the
Fourier domain!
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* Useful trick for fast convolutions, especially for large filters



Convolution Theorem Example

FT of image

F

Gaussiano = 4 FT of Gaussian is another Gaussian
Filter Filter



Convolution Theorem — Why it matters?

Conv in space domain Conv in frequency domain
*Convolve the whole image *FFT + Pointwise

with a filter multiplications
*Expensive to compute *Much faster to compute

*O(n”4) for 2D convolution *O(n”2 log”"2(n)) for 2D FFT



Gaussian & Laplacian Pyramids



Gaussian Pyramid Logic

For each level
1. Blur input image with a Gaussian filter
2. Downsample image
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What is Gk?
The operation including both blur

and downsample



Gaussian Pyramid
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Use of Laplacian

Gaussian filter
(a.k.a. “low pass”)
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Approx. Laplacian
(a.k.a. “high pass”)




Laplacian Pyramid

Upsample the Gaussian pyramid at level k+1
Blur the upsampled Gaussian pyramid at level k+1

The difference of Gaussian pyramid at level k and result from the
2nd step is the Laplacian pyramid
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What is Fk?

The operation including both
upsample and blur together
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Laplacian Pyramid

Gaussian pyramid
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Gaussian & Laplacian Pyramid
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Laplacian pyramid

Analysis/Encoder Synthesis/Decoder



Gaussian & Laplacian Pyramid - Applications

*Texture synthesis
*Image compression
*Noise removal

*Computing image “kaypoints”



Image Blending (PS2)

* Build Laplacian pyramid for both
images: L_A,L B

* Build Gaussian pyramid for mask: G

* Build a combined Laplacian pyramid

* Collapse L to obtain the blended image




