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Linear Independence

* A set of vectors are linearly dependent if you can write one as a linear
combination of the others

o 01
* Suppose: a=|0| b = |6
wd 0.
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x=|0| = 2a y=|-2l= —-a—=>b
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Is the set {a, b, c} linearly independent?
Is the set {a, b, x} linearly independent?



Basis

Consider all vectors in R” (3D Plane)
. A set of linearly independent vectors whose span is the whole 3D
plane are called the basis for the 3D plane

E.g., the standard basis {i, j, k} spans the whole 3D plane:

Any other vector in the plane (e.g., a) is a linear combination of {j, j, k}



Using Basis for expressing vectors
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{i, j, k} are the three basis vectors here
We could decompose it in terms of some other basis as well



Intuition behind Fourier transform: change of
basis
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Bottom line:
Fourier coefficients are coordinates in the Fourier basis defined by
e1,€», €3
Calculating Fourier coefficients is just about finding the projection on the
vector f(n) along the basis




Discrete Fourier Transform

We can extend this to any vector of length N:
N—-1 n
Flul= ) fln]e™>™ W
n=0
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where e?™N) = cos (Zm 7) — isin (Zm 7)

* Qutput F is a weighted sum of sines and cosines with the

weights governed by input f
 We can think of the exponentials as basis functions, and the

function F is expressed in terms of those basis



Continuous Fourier Transform

Going from continuous to discrete just means we take the integral
from —oo to co:

X(w) = foox(t)e_thdt



Time domain to frequency domain

* Any univariate function can be rewritten as a weighted sum of sines

and cosines of different frequencies
i.e., if we weighted sum across the different frequencies, we reconstruct the original signal
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These are those coefficients!
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Frequency Basis

We’'re using a basis of sinusoids with different frequencies.
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Complex Exponential Review
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Unit circle in the complex plane



Visualizing Fourier Transform Matrix
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When u =0, exp 27Tl— = exp(—2mi) for all n
=> no change in frequency fromn=0ton=N Source: Torralba, Freeman, Isola




Visualizing Fourier Transform Matrlx
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Real u=15
16x16 array
Whenu =1, exp an— = exp Zm for all n

=» no change in frequency fromn=20 to n =N Source:Torralba, Freeman. Isola



Visualizing Fourier Transform Matrix

un
EXp (—27” —) For N=16

Imag
@Rea

16x16 array
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Source:slorralba, Freeman, Isola



Examples

Let’'ssaya =[1,0,0,0], N=4
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Examples

Let’'ssaya =[1,0,0,0], N=4

a = np.array([1,0,0,0])
np.fft.fft (a)

All coefficients are 1!
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1D Fourier Tran
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1D Fourier Transform and Images
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Represent this function in a Fourier basis.
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1D Fourier Transform and Images

Fourier coefficients
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Reconstructions of Different Freq.
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