Lecture 9: Convolutional networks



Announcements

e PS3 due tonight, PS4 out tonight

o Next week: guest lectures on image generation by
Daniel Geng, Sarah Jablbour, and Yiming Dou



Image classification

Classifier [

Image X label y

Source: Isola, Torralba, Freeman



Image classification

What should these be”
“

> 1+ | || [»| | —— |“Fish”

Image X label y

Source: Isola, Torralba, Freeman



ldea #1: Fully-connected network

<~ 00000

-
But X is really big!

Say, 256 x 256 x 3 = 197k

J




Can we use convolution in a neural network?

6 Source: Isola, Torralba, Freeman



Recall: Sparsely connected network

8 % Fach unit Is connected to a subset
O O—0O of the units in the previous layer.
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/ Source: Isola, Torralba, Freeman



Convolutional neural network

Conv layer

Each output unit is computed

O00000OOO

from an image patch.

8 Source: Isola, Torralba, Freeman



Conv layer

-

g

slele ?f?Q
f

OO0
=00
=00
=00
=0—0O
=0
=0

O—0

y 9(

Weight sharing

We “share” weights for each patch.

f a feature Is useful In one position,

) it should be useful In others, too.
Y

9 Source: Isola, Torralba, Freeman



Convolution is a linear function

L (I+1) (1)

® Constrained linear layer e.g., image
® Fewer parameters: easier to learn, less overfitting
® Usually use zero padding

10 Source: Isola, Torralba, Freeman



Multiple channels

Conv layer
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Multiple channels
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Multiple channels

Conv layer

QNXCU) %NXC”“)

Wc(l—l—l)

0000000 ®
T100000000

s

13 Source: Isola, Torralba, Freeman



Multiple channels: Example

(1) < (41)

128
I:{> Filter Bank with I:{>
3x3 filters
128

3 96

128

128

How many parameters does each filter have?
(a) 9 (b) 27 (c)96 (d) 2592

14 Source: Isola, Torralba, Freeman



Multiple channels: Example

(1) < (41)

128
I:{> Filter Bank with I:{>
3x3 filters
128

3 96

128

128

How many parameters total does this layer have”?
(a) 9 (b) 27 (c)96 (d) 2592

15



Image classification

-

Image X
.
Problems with this idea:
1. No “global” processing.
K2. How do you get the final label’ )

16

—_— RelU RelU RelU ———— [“Figh”

label y

Source: Isola, Torralba, Freeman



Recall; yramld representations

512 256 128 64

=\ //,

Gaussian Pyramid Laplacian Pyramid

Can we use a similar idea in CNNs?

Source: Isola, Torralba, Freeman



Filter
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2 00000000

Max pooling
2z, = max g(y,)
JEN ()T

Source: Isola, Torralba, Freeman



Filter
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2 00000000

Max pooling
<l — IlaX g(y)
JeN(G)

Mean pooling

2k = Ui/‘ Z 9(y;)

JEN(5)

Blurring [Zhang 2019]

| I 2 1
z=conv(y, — |2 4 2])

1611 9 1

Source: Isola, Torralba, Freeman



Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

Imax

20
Source: Isola, Torralba, Freeman



Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

same large response
regardless of exact
position of edge

21
Source: Isola, Torralba, Freeman



Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

however, if the image
IS translated a lot...

22
Source: Isola, Torralba, Freeman



Filter

00000000

Downsampling

Pool and downsample
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Source: Isola, Torralba, Freeman



Filter

00000000

Py HO x W 5o

Downsampling

Downsample

O O
O—0
O O
O—O

O
O—0
O—0O O
O
y 9(y) 2
s %H(l_l_l)XW(H_l)XC(H_l)

Source: Isola, Torralba, Freeman



Strided operations

Conv layer

Strided operations combine a

W —0—0 given operation (convolution or

Stride 2 pooling) and downsampling into
a single operation.

@O
OO Strided convolution is an

alternative to pooling layers:
y g(y) just do a strided convolution!

0000000

25 Source: Isola, Torralba, Freeman



Computation in a neural net
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Computation in a neural net

~ . 9
— “clown fish

Source: Isola, Torralba, Freeman



Receptive fields

28
Source: Isola, Torralba, Freeman



Receptive fields

Pool and 31 Filt Pool and

O downsample by 2 X1 rer downsample by 2

O

O

O

O O O
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N ?/’ —2 O
A O O

RF=RF*2  RF=RF +floor(3/2)*2  RF = RF*2

O
O .
kernel size scale factor

[See also: http://fomoro.com/tools/receptive-fields/index.html] 29 Source: Isola, Torralba, Freeman



http://fomoro.com/tools/receptive-fields/index.html

Why have coefficients only for nearby pixels”

0.95

O
©

Normalized correlation

0.85
0 100 200 300

A x (pixels)

[Simoncelli; Statistical Modelling of Photographic Images, 2005]

Source: Isola, Torralba, Freeman 30



Implementation details

~

Convolutional layers

Option 1: Just make the giant convolution matrix
and use the fully backprop equations for linear layers!
Early deep learning frameworks did this.

Option 2: Use a more optimized implementation.
There are optimized GPU implementations. For very
large filters, these use Fourier ITransform.

Backwards pass: 1hese take the form of convolutions.

\-

J

i Max pooling: backwards pass similar to RelLU.

~

J
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Network designs



ImageNet classification (top 5)

30,0

25,0

20,0

15,0

10,0

5,0

0,0
2011 (XRCE)

33 Source: Isola, Torralba, Freeman



ImageNet classification (top 5) 2012: AlexNet

. 5 conv. layers

| 11x11 conv, 96, /4, pool/2 |

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

| 3x3 conv, 256, pool/2 \

| fc, 4096 |

| fc, 4096 \

| fc, 1000 |

25,0

20,0

15,0

10,0

5,0

0,0 ' T
2011 (XRCE) 2012 (AlexNet) Error: 16.4%

[Krizhevsky et al: ImageNet Classification with Deep Convolutional Neural Networks, NeurlPS 2012]

34 Source: Isola, Torralba, Freeman



Alexnet — [Krizhevsky et al. NIPS 2012]

[227x227x3] INPUT

55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

27x27x96] MAX POOL1: 3x3 filters at stride 2

11x11 conv, 96, /4, pool/2

27x27x96] NORM1: Normalization layer

\

5x5 conv, 256, pool/2

27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
13x13x256] MAX POOL2: 3x3 filters at stride 2

\

3x3 conv, 384 13x13x256] NORM2: Normalization layer

\ 4

: | ide 1 1
3x3 conv, 384 [13x13x384] CONV3: 384 3x3 filters at stride 1, pad

\

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

3x3 conv, 256, pool/2

\ 4 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
fec 4096 [6x6x256] MAX POOL3: 3x3 filters at stride 2

* [4096] FC6: 4096 neurons
fc, 4096

* [4096] FC7: 4096 neurons
fc, 1000

Jyayyas

[1000] FC8: 1000 neurons (class scores) 35

Source: Isola, Torralba, Freeman



11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2
3x3 conv, 384
3x3 conv, 384
3x3 conv, 256, pool/2
fc, 4096

fc, 4096

fc, 1000

What filters are learned?

36
Source: Isola, Torralba, Freeman



What filters are learned?

37

Source: Marc’Aurelio Ranzato & Isola, Torralba, Freeman



Filters In first layer

N fy
B
ifx
|

11x11 convolution kernel
(3 color channels)

38
Source: Isola, Torralba, Freeman



Filters In first layer

fx

39
Source: Isola, Torralba, Freeman



Filters In first layer

Afy

fx

40
Source: Isola, Torralba, Freeman



Filters In first layer

Afy

41
Source: Isola, Torralba, Freeman



Filters In first layer

Afy

H

fx

42
Source: Isola, Torralba, Freeman



Filters In first layer

Afy

fx

43
Source: Isola, Torralba, Freeman



Filters In first layer

Afy

44
Source: Isola, Torralba, Freeman



Filters In first layer
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Source: Isola, Torralba, Freeman



[Hubel and Wiesel 59]

Electrical signal e N
from brain 1

Recording electrode ———
Visual area
W of brain

\
P

Source: Andrea Vedaldi



A good fit to the experimental results

Oriented filters

47 Source: Andrea Vedald



Figure source: Wikipedia

History: Neocognitron

iInput .
layer .&.”’
contrast V. 1
extraction edge recognition

extraction layer

K. Fukushima, 1980s

48

Source: S. Lazebnik



eCun, Bottou,

History: LeNet

C3:f. maps 16@10x10

INPUT C1: feature maps S4:f. maps 16@5x5

30430 6@28x28 855 maps

St |'I-_
i

e

Convolutions Subsampling Convolutlons Subsampllng

Neocognitron + backpropagation

Average pooling

Sigmoid or tanh nonlinearity

-ully connected layers at the end

Trained on MNIST digit dataset with 60K training examples

49

0 v 76 layer OUTPUT

.-

Full conrlectlon Gaussuan connections

Full oonnectlon

Bengio, Haffner. “Gradient-based learning applied to document recognition”, 1998]

Source: S. Lazebnik



ImageNet Challenge

[Russakovsky, Deng, Su, Krause, Satheesh,
“ImageNet Large Scale Visual Recognition C

e ~14 million labeled images, 20k classes

* |mages gathered from Internet

e Human labels via Amazon MTurk

* |mageNet Large-Scale Visual

Challenge (ILSVRO):
1.2 million training images, 1000 classes

Ma, Huang, Kar

nallenge”, 2015

50

oathy, Khosla,

Bernstein,

Recognition

Berge, Fel-Fel,



Vlore recent networks

And advances that make them work:

e (Chaining small filters
e Residual layers
e Normalization



30,0

25,0

20,0

15,0

10,0

5,0

0,0

ImageNet Classification Error (Top 5)

2011 (XRCE)

|

2012 (AlexNet)

T

52

Source: Isola, Torralba, Freeman



2014: VGG
16 conv. layers

ImageNet Classification Error (Top 5)

3x3 conv, 64

v

3x3 conv, 64, pool/2

30,0

3x3 conv, 128

3x3 conv, 128, pool/2

25,0

3x3 conv, 256

\

3x3 conv, 256

\

3x3 conv, 256

3x3 conv, 256, pool/2

20,0

3x3 conv, 512

15,0 3x3 co!v, 512
3x3 coﬁv, 512
3x3 conv, !12, pool/2
10,0 3x3 co!v, 512
3x3 co!v, 512
3x3 co!v, 512
5,0 v
3x3 conv, 512, pool/2
l: fc, 4*096
0,0 - . . ) fc, 4*096

v
2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) fc, 1000

Error: 7.3%

[Simonyan & Zisserman: Very Deep Convolutional Networks
Source: Isola, Torralba, Freeman 53 for Large-Scale Image Recognition, ICLR 2015]




VGG-Net [Simonyan & Zisserman, 2015}

2014: VGG
16 conv. layers

Main developments

e Small convolutional kernels: only 3x3

e [ncreased depth (5 -> 16/19 layers)

(€13 [€3 (A2 42 (€42 (42142 42 142 G192 (€42 (42 (9L [€: 4-*

Error: 7.3%

o4 Source: Isola, Torralba, Freeman



Other tricks for designing convolutional nets



Chaining convolutions

3x3 3x3
.O.

OI=

Source: Isola, Torralba, Freeman

5x5

Nonlinearity in between.

25 coefficients, but only
18 degrees of freedom

9 coefficients, but only
6 degrees of freedom.
Less common.

56



1x1 convolutions

3x3

1x1

S Why do this?

(nonlinearity in between)



Grouped Convolutions

Input:
N/2 channels

Output: /
N channels

/

/

/

Split channels into N groups, and process separately with N convolutiorlayers.




ImageNet Classification Error (Top 5)

30,0

25,0 -

20,0 -

15,0 -

10,0 -

50 -

0,0 Y
2011 (XRCE) 2012 (AlexNet)

Source: Isola, Torralba, Freeman

2013 (ZF)

2014 (VGG)
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ImageNet Classification Error (Top 5)

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014 Human 2015 (ResNet)
(GoogleNet)

30,0 -

2016: ResNet
>100 conv. layers

25,0 -

20,0 -

15,0 -

50 -

0,0 -

R e R Eet ae e yRa Rt L aae

Error: 3.6%

[He et al: Deep Residual Learning for Image Recognition, CVPR 2016]

Source: Isola, Torralba, Freeman



2016: ResNet

A0 con lyers ResNet [He et al, 2016}

Main developments

* Increased depth possible
through residual blocks

X
weight layer

relu

X

weight layer

SULUBBUUELU LS UUEULUULEEBUSLLVBEEELLEYY

identity

SyLLYY

Errok: 3.6% 61

Source: Isola, Torralba, Freeman



Residual Blocks

Problem: Hard to train very deep nets (50+ layers). This is an optimization issue,
not overfitting: shallow models often get higher training accuracy than deep ones!

ldea: Make it easy to represent for the network to implement the identity.

Normal convolution + relu: Residual connection

r;11 = relu(x; o f) r;11 = relu((x; o f) + x;)

In general, do multiple convolutions (with nonlinearities) before summing:
r;11 = relu(F(x;) + x;)

62



Residual Blocks

. Why do they work?
!
F(x) _1—lwelght Iraeylir\ e Gradients can propagate faster
welght layer / dentity (via the identity mapping)
F(x) + x

relu

e \Within each block, only small
residuals have to be learned

Source: Isola, Torralba, Freeman 63



Normalization layers

® Standardize activations by subtracting mean and dividing by
standard deviation (averaged over all spatial locations).

® [his provides a constant “interface” for later layers of the

networks. Ensures that the previous layer will have unit
variance and zero mean.

® Obtains invariance to mean and variance.

e (Can allow you to train with larger learning rate and significantly
speed up training!

o4



Source: Isola, Torralba, Freeman

Normalization layers

N\

h h h,
Norm RelLU O
O

= /O O =
O
ﬂ O

il b=l



Source: Isola, Torralba, Freeman

Normalization layers

OO0O00OO0r

VH



Source: Isola, Torralba, Freeman

Normalization layers

OO0O00OO0r

VH



Source: Isola, Torralba, Freeman

Normalization layers

O@OO0F

VH

638



INnstance normalization

Instanc,orm Average and standard deviation
SR each filter response, estimated
““ y
0‘0‘:““:0 Filter value in a CNN layer over instance.
TS
. . i =t
iy gl
By iy i
S o Bl
k S
b i \/ Var|hy|

Normalize a single hidden unit’s activations to be mean O, standard deviation 1.

[Figure from Wu & He, 2018] [Ulyanov et al., 2015]
69



Batch normalization

Average and standard deviation
each filter response, estimated
Filter value in a CNN layer over whole batch.

~ hk — “:[hk]
\/Var[hk]

Normalize a single hidden unit’s activations to be mean O, standard deviation 1.
At test time, remember the mean and standard deviation seen during training.

[Figure from Wu & He, 2018] [loffe & Szegedy, 2015]
70



A few practical issues



Dealing with rectangular images

Rectangular iImages
Resize, then take square

crop from center



[Training with data augmentation

Flipping

® | ess susceptible to overtitting.
® |mproves performance by simulating examples.

Original image



[Training with data augmentation

Flipping Cropping

N

Original image Scaling Color jittering




Beyond image labeling



Object recognition: what objects are in the image?

‘Birds”

Source: Torralba, Freeman, Isola



Semantic segmentation

(Colors represent categories)

General technique: predict something at every pixel

Source: Torralba, Freeman, Isola



ldea #1: Independently classity windows



} What's the object class of the center pixel?

b,
Training data
X Y
!\ “Birg” } !\
)
7 Ir b, ¢ i{> “Sky”

Source: Torralba, Freeman, Isola



ldea #2: rully convolutional networks



Fully convolutional network

@\6
Q
Q
O
0O
‘50
$\%\
O
N,
D
. ™~
—

Classification problem with K classes

81



ldea #3: Dilated convolutions



Dilated convolutions

5x5

3x3 : 2 Z 2 ; e Alternative to pooling that

b | c - :

1 T preserves Input size

h | i 00|0|0]0 ® O degrees of freedom
gl|lO|h| O]l

e 5X5 receptive field



CNN without dilated convolutions

fzﬁé@
Q\

34



CNN with dilated convolutions

85 Even with dilated convolutions, still not full resolution



ldea #4: Encoder-decoder models



Encoder-decoder architectures

Convolutions Deconvolutions

87 Source: Torralba, Freeman, Isola



Upsampling

1112 2

1 2 — 11122 |

3 | 4 3 3ala4a =g  Convolution
3| 3|4 | 4

® Often using nearest-neighbor upsampling
® Can also use interpolation.
® Produces fewer “checkerboard” artifacts

83



Transposed convolution

- +

/ I

N

W

W

=
oNO||o|w|=
®hO| OR[N
olo|lo||lolo|o
olo|lo||lolo|o
©wo|lo|w|=
= N
== I

® \\Veight the filter by the image coefficient and sum.
® Also sometimes called “upconvolution™ or “deconvolution”.

89
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Transposed convolution

1 1 1 2
2 3 3 4
/ F
Can lead to “checkerboard” artifacts. Donahue, et al., 2016 (3]

([Odena et al. Distill article]

90


https://distill.pub/2016/deconv-checkerboard/

Encoder-decoder architectures

Skip connections

Decoder

Convolutions Deconvolutions

91 Source: Torralba, Freeman, Isola



Encoder-decoder architectures

Transposed convolution Early layers and late layers have
/ same shape. Concatenate channel-wise!
.................... >
T
........................................................... >
L1
*Vanilla” encoder-decoder architecture U-Net

Figures from [Isola et al., “Image-to-Imagesdranslation with Conditional Adversarial Networks”, 2017]



concat
......................................... >
- i = - o R
I,
o Wx H
W H .
o W



U-net

e
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Encoder-decoder architectures

SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image
Segmentation

RGB Image

Convolutional Encoder-Decoder

Pooling Indices

B Pooling I Upsampling

B conv + Batch Normalisation + RelLU

Softmax

95

polla, Senior Member, IEEE,

Output

Segmentation

k architecture for semantic pixel-wise segmentation
etwork, a corresponding decoder network followed
logically identical to the 13 convolutional layers in the
encoder feature maps to full input resolution feature
ich the decoder upsamples its lower resolution input
X-pooling step of the corresponding encoder to

The upsampled maps are sparse and are then
oposed architecture with the widely adopted FCN
This comparison reveals the memory versus

designed to be efficient both in terms of memory and
trainable parameters than other competing

e also performed a controlled benchmark of SegNet
entation tasks. These quantitative assessments
most efficient inference memory-wise as compared
eb demo at http://mi.eng.cam.ac.uk/projects/segnet/.

2ntation, Indoor Scenes, Road Scenes, Encoder,

and understand the spatial-relationship (context) be-
ent classes such as road and side-walk. In typical road
majority of the pixels belong to large classes such
ilding and hence the network must produce smooth
ns. The engine must also have the ability to delineate
ed on their shape despite their small size. Hence it is
0 retain boundary information in the extracted image
on. From a computational perspective, it is necessary
work to be efficient in terms of both memory and
n time during inference. The ability to train end-to-end
jointly optimise all the weights in the network using
weight update technique such as stochastic gradient

his is primarily because max pooling and sub-sampling reduce
feature map resolution. Our motivation to design SegNet arises
from this need to map low resolution features to input resolution
for pixel-wise classification. This mapping must produce features
which are useful for accurate boundary localization.

Our architecture, SegNet, is designed to be an efficient ar-
chitecture for pixel-wise semantic segmentation. It is primarily
motivated by road scene understanding applications which require
the ability to model appearance (road, building), shape (cars,

e V. Badrinarayanan, A. Kendall, R. Cipolla are with the Machine Intelli-
gence Lab, Department of Engineering, University of Cambridge, UK.
E-mail: vb292,agk34,cipolla@eng.cam.ac.uk

Source: Torralba, Freeman, Isola

D) [17] is an additional benefit since it is more easily
pie. The design of SegNet arose from a need to match these
criteria.

The encoder network in SegNet is topologically identical to
the convolutional layers in VGG16 [I]. We remove the fully
connected layers of VGG16 which makes the SegNet encoder
network significantly smaller and easier to train than many other
recent architectures [2]], [4], [11], [18]. The key component of
SegNet is the decoder network which consists of a hierarchy
of decoders one corresponding to each encoder. Of these, the
appropriate decoders use the max-pooling indices received from
the corresponding encoder to perform non-linear upsampling of
their input feature maps. This idea was inspired from an archi-
tecture designed for unsupervised feature learning [19]. Reusing
max-pooling indices in the decoding process has several practical



Other uses for U-nets

Goal: recover the original image
Recall: denoising problem .



Denoising

Xclean random noise

97



Source: Torralba, Freeman, Isola



PS5: CNNs

® [rain a convolutional network to
recognize scenes

e Use Pylorch + autodiff
¢ [rain on GPU

99



Next class: image generation with GANs



