Lecture 7: Neural networks



e Discussion this week: machine learning
e Reading:
- Szeliski 5.3
- Goodfellow Deep Feedforward Networks
e Start thinking about project
o PS2 due today — submit to gradescope and canvas



loday

Brief history of neural networks

Computation in neural networks

Multi-layer perceptrons (for PS4)

Estimating gradients (to be continued next class).
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Goal: Non-linear decision boundary




Perceptron

® |n 1957 Frank Rosenblatt invented the perceptron

® Computers at the time were too slow to run the perceptron, so Rosenblatt
built a special purpose machine with adjustable resistors

® New York Times Reported: “The Navy revealed the embryo of an electronic
computer that it expects will be able to walk, talk, see, write, reproduce itself

and be conscilous of Its existence”




Minsky and Papert, Perceptrons, 1972

S Perceptrons, expanded edition

An Introduction to Computational Geometry

By Marvin Minsky and Seymour A. Papert

Perceptrons Overview

Perceptrons - the first systematic study of parallelism in computation - has remained a classical work on
threshold automata networks for nearly two decades. It marked a historical turn in artificial intelligence,
and it is required reading for anyone who wants to understand the connectionist counterrevolution that
is going on today.

ik \"‘;(_";:;"' Artificial-intelligence research, which for a time concentrated on the programming of ton Neumann
computers, is swinging back to the idea that intelligence might emerge from the activity of networks of
neuronlike entities. Minsky and Papert's book was the first example of a mathematical analysis carried
n u m far enough to show the exact limitations of a class of computing machines that could seriously be
considered as models of the brain. Now the new developments in mathematical tools, the recent interest
of physicists in the theory of disordered matter, the new insights into and psychological models of how
the brain works, and the evolution of fast computers that can simulate networks of automata have given
Perceptrons new importance.

FOR BUYING OPTIONS, START HERE

Select Shipping Destination —

Witnessing the swing of the intellectual pendulum, Minsky and Papert have added a new chapter in
Paperback | $35.00 Short | £24,95 | which they discuss the current state of parallel computers, review developments since the appearance of
f:: lggzgifnz:j’:;:?' i fote the 1972 edition, and identify new research directions related to connectionism. They note a central
theoretical challenge facing connectionism: the challenge to reach a deeper understanding of how
"objects” or "agents" with individuality can emerge in a network. Progress in this area would link
connectionism with what the authors have called "society theories of mind." 11

Source:; Isola, Torralba, Freeman



Perceptrons,
1958

enthusiasm

Minsky and Papert,
1972

time

12
Based on slide by: Isola, Torralba, Freeman



Parallel Distributed Processing (PDP), 1986
PARALLEL DISTRIBUTED
PROCESSING |

Exploratians i th

, V‘()lumc 1 Found

DAVID E.RUMELHART, JAMES L. McCLELLAND,

L “AND THE PDP RESEARCH GROUP
%) 13

Source:; Isola, Torralba, Freeman



Perceptrons, PDP book,

| 1958 1986
enthusiasm

Minsky and Papert,
1972

time
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Source:; Isola, Torralba, Freeman



| eCun convolutional neural networks

PROC. OF THE IEEE, NOVEMBER 1998 7

C3:f. maps 16@10x10

g\z,pgg gé: zfgitztge maps S4: f. maps 16@5x5
X S2: . maps C5: layer
5@14x14 I o0, Loy OUTRUT

TN

—'.\

|
Full Coanection Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Demos:
http://yann.lecun.com/exdb/lenet/index.html

15
Source:; Isola, Torralba, Freeman


http://yann.lecun.com/exdb/lenet/index.html
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Source:; Isola, Torralba, Freeman
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Fig. 13,



input

Neural networks to
recognize
handwritten digits

. BRI A s I )
multiscale / edge detected : f/‘gg human faces:

2 $
S
@ : s .

Neural networks for
tougher problems?
not really

17
http://pub.clement.farabet.net/ecvw09.pdf Source: Isola, Torralba, Freeman



http://pub.clement.farabet.net/ecvw09.pdf

Machine learning circa 2000

e Neural Information Processing Systems (NeurlPS), is a top
conference on machine learning.

e or the 2000 conference:

— title words predictive of paper acceptance: “Belief Propagation”
and “Gaussian”.

— title words predictive of paper rejection: “Neural”™ and “Network™.

18
Source:; Isola, Torralba, Freeman



Perceptrons, PDP book,
1958 1986

enthusiasm

Minsky and Papert, Neural network winter,
1972 2000

time

19
Source:; Isola, Torralba, Freeman



Krizhevsky, Sutskever, and Hinton, NeurlPS 2012
“AlexNet”
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Uof 4 pooling pooling
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Got all the “pieces” right, e.q.,
* Trained on ImageNet

» 8 layer architecture (for reference: today we have architectures with 100+ layers)
» Allowed for multi-GP training

Source:; Isola, Torralba, Freeman



anhevsk Sutskever, and Hinton, NeurlPS 2012
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anhevsky, Sutskever, and Hinton, NeurlPS 2012

mite container shi
mite ‘container ship

black widow | lifeboat |
amphibian|

fireboat .

motor scooter

eopar:

leapard

A : T

N«

rmnie

musnroom

convertible agaric | | monkey
grille mushroom spider monkey

pickup jelly fungus titi

beach wagon indri
fire engine | dead-man’'s-fingers howler monkey

=l|sola, Torralba, Freeman



28 years

ﬁﬁ

Perceptrons,
1958

enthusiasm

Minsky and
1972

28 years

Kri
PDP book, S
1986

BVSKY,
ever,
ton, 20172

Neural net winter,
2000

Papert,

25

time

Source:; Isola, Torralba, Freeman



What comes next?

’hevsky,
skever,
ton, 2012

Perceptrons, PDP book,
1958 1986

enthusiasm

Al winter,
2000

Minsky and
1972

Papert,

28 years 28 years time
—— < ————————
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Source:; Isola, Torralba, Freeman
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INnspiration: Neurons

Axon Frexrviwals

7
Pre— s'ynapﬁ C E/

( ‘sending") cell
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Image source: Khan academy



https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/the-synapse

INnspiration: Hierarchical Representations

/3 Best to treat as inspiration. The
~ neural nets we’ll talk about aren’t
SSE) very biologically plausible.

e
=) NN

A ——

VI/V2 SN
OO OO

28 Source: Isola, Torralba, Freeman [Serre, 2014]



Object recognition

Pixel 1

Neural Network

Is dog?

Pixel 2

Feature Space

+ +

Paw

Pixel 1
Goal: automatically learn a function that maps data from the input space to a
feature space, I.e., "feature learning”, rather than use hand-crafted features



Computation in a neural net

Lets say we have some 1D input that we want to convert to some new feature space:

Linear layer
‘ﬂpUt Ou’[put /weights
representation representation
Xi O e Z W : X+
@ Wij O y] . L=l
C 8 i
O >
O ——C Vj
O O
@ O
@ O
Neuron
(a.k.a unit)

Adapted from: Isola, Torralba, Freeman 35



Computation in a neural net

Lets say we have some 1D input that we want to convert to some new feature space:

Linear layer
‘ﬂpUt Ou’[put welghts
representation representation Z
(O Wi
C
O~ blas
O
O
C
C
by
1 C Neuron
(a.k.a unit)

Adapted from: Isola, Torralba, Freeman 36



Computation in a neural net — Matrix Multiplication

y] — Z Wijxi + b] 2 WiiXi = X Wj = xij
i | i
Wi
= v, .
y] — X W] + b] [x1 X2 ...xn] WZ + b] — [x1 X2 ... Xnp 1]

Vector of / \ Vector of

all input weights
units

Wn

37



Example: Linear Regression

Linear layer

Input Qutput
representation representation

‘

Adapted from: Isola, Torralba, Freeman 38



Computation in a neural net — Full Layer

Linear layer y=Wx+0b
Input Output Wi1 = Winl1I* b4 Y1
represntation repres(e)n;/ation : : X2 | 4 by | _ |)2
1 NN mEEn s
: 8%713 le *e W]Tl Xn b] y]
C O
: — ; parameters of the model: § — {W’ b}
C O
C b, QY
1C

Adapted from: Isola, Torralba, Freeman 39



Computation in a neural net — Full Layer

Linear layer Full layer
Input OUtht y B Wx § b
representation representation Wip oo W]n b1
¢ OV : '
C QY2 '
e 83’3 Wiq WJTl |
@ —
X ® — O |V
C O
C O Can again simplify notation by
@ ! O Vi .
o j appending a 1to X

Adapted from: Isola, Torralba, Freeman 40



Computation in a neural net — Recap

We can now transform our input representation vector into some output
representation vector using a bunch of linear combinations of the input:

Input OQutput
representation representation
O O O
: : -
O .
We can repeat this as
X 8 Y 8 z 8 many times as we want!
O O O
O O O
O O O

41



What is the problem with this idea”

O O O
S |9 v S

O

(S Wix IS WaWix O wiw,Wix

O O O
O O O
O O O
O O O

Can be expressed as single linear layer!

Limited power: can’t solve XOR :(

Adapted from: Isola, Torralba, Freeman

0l0]0]0)01010l0



Solution: simple nonlinearity

Linear layer
it y>0

1,
9(y) = .
Input Output 0, otherwise

representation representation

S 00000000
Q
=

N’

.
O
2
2
7
®
N

=

- <

() OO000000)0O0)C,
s

< 00080000

Adapted from: Isola, Torralba, Freeman Non-linearity



Example: linear classitication with a perceptron
Y

y=x'wW-+b

44 Source: Isola, Torralba, Freeman



Example: linear classitication with a perceptron
Y

y=x'wW-+b

() = I, it y>0
IS = 0, otherwise

45 Source: Isola, Torralba, Freeman



Example: linear classitication with a perceptron
Y

- 15

10

—10

46

y=x'wW-+b

() = I, if y>0
IS = 0, otherwise

‘when vy Is greater than O, set all

pixel values to 1 (green),
otherwise, set all pixel values to O

(red)”

Source: Isola, Torralba, Freeman



Example: linear classification with a perceptron
9(y)

47

y=x'wW-+b

9(y) = 0, otherwise

{1, it y>0
‘when vy Is greater than O, set all
pixel values to 1 (green),

otherwise, set all pixel values to O
(red)”

Source: Isola, Torralba, Freeman



Computation in a neural net - nonlinearity

Linear layer
() = I, it y>0
Input Qutput NI 0, otherwise
representation representation 1.0
C O—O
® O O 0.8
@ O 8 0.6
@
S O—0O 0.
C O—O
() . O—0O 0.0 .
] -4 —2 0 2 4
1C Yy g) Y
. . 0
Can’t use with gradient descent, — g = 0

Adapted from: Isola, Torralba, Freeman a y



Computation in a neural net - nonlinearity

Linear layer Sigmoid
1
nput Output 9y) =oly) = 1=
representation representation o

C O—=O |

® O Q 0.8-

U O 8 0.6

@

U O—O 0.2

C O—O

® b O O 0.0- |

j -4 —2 0) 2 4

1 C y g)

Adapted from: Isola, Torralba, Freeman



Computation in a neural net - nonlinearity

» Bounded between [0,1] Sigmoid
1

- Saturation for large +/- inputs 9(y) = o(y) = 1+ e~ Y

1.0
» Gradients go to zero o
- Better in practice to use: tanh(y) a(v) oo
=29(y)—1

0.0 |

—4 —2 0 2 4

50 Adapted from: Isola, Torralba, Fre



Computation in a neural net — nonlinearity

* Unbounded output (on positive side) Rectified linear unit (ReLU)
. Effics ' . 99 _ )0, i y <O = max(0,
Efficient to implement: oy = {1’ £ u>0 g(y) (0,9)

» Also seems to help convergence (6x
speedup vs. tanh in [Krizhevsky et al.

2012]) >
9(y) -
» Drawback: it strongly in negative .
region, unit is dead forever (no gradient). N
—4 =2 0 2 4
» Default choice: widely used In current N

models!

S Source: Isola, Torralba, Freeman



Computation in a neural net — nonlinearity

3 | | Leaky Rel U
where a is small (e.g., 0.02) . {max(()’y)’ >0
o | | @_ —a, it y<O B amin(0,y), if y <O
Efficient to iImplement: 5y {1, oy >0 )
» Has non-zero gradients everywhere (unlike 4
RelU) 3-
g9(y)
.
.

o4 Source: Isola, Torralba, Freeman



Stacking layers

Input Intermediate Output
representation representation representation
C O—C O
C O—C O
S s s
S :

C O

(1) (2)
@ b, O—C b O
1C 1C

h = “hidden units”

56 Adapted from: Isola, Torralba, Freeman



Connectivity patterns

Input Qutput Input Qutput
representation representation representation w® representation

x?
\Q%
3

X Yy
O= —— =)
— O
Fully connected layer Locally connected layer
(Sparse W)

57 Source: Isola, Torralba, Freeman



Stacking layers

Input Intermediate Output
representation representation representation

58 Source: Isola, Torralba, Freeman



Stacking layers

Input Intermediate Output
representation representation representation

negative

59 Source: Isola, Torralba, Freeman



Stacking layers

Input Intermediate Output
representation representation representation

negative

60 Source: Isola, Torralba, Freeman



Stacking layers

Input Intermediate Output
representation representation representation

negative

Source:; Isola, Torralba, Freeman



Stacking layers

Input Intermediate Output
representation representation representation

negative

62 Source: Isola, Torralba, Freeman



Stacking layers

Input Intermediate Output
representation representation representation

negative

63 Source: Isola, Torralba, Freeman



Stacking layers - What's actually happening”

Low level features: higher level features: even higher level features.:
e.d., edge, texture, ... e.d., shape e.g., “paw”, “fur”

010]0)0)01010]0
0]0]0]01010]0)0,
OO000OO0000

010]0]0)01010l0

64 Source: Isola, Torralba, Freeman



Deep nets

fx) = fu( fs(f2(fi(x))

Source: Isola, Torralba, Freeman 65



Source: Isola, Torralba, Freeman

Deep nets - Intuition

"has horizontal edge”
"has vertical edge’

66

\l/

"dog



Source: Isola, Torralba, Freeman

Deep nets - Intuition

"has rounded edge”

67

\l/

"dog



Deep nets - Intuition

‘has white tur”
‘has paw"
etc

How do we
make a
classification?”

\l/

"dog

Source: Isola, Torralba, Freeman 68



Deep nets - Intuition Recalll:

“has white fur” Feature Space
‘has paw’
etc

Classity

Source: Isola, Torralba, Freeman 69



Computation has a simple form

e Composition of linear functions with nonlinearities in between

e E.g. matrix multiplications with ReLU, max (0, X) afterwards
e Do a matrix multiplication, set all negative values to O, repeat

But where do we get the weights from?



How do we learn the parameters”

Learned @—— 91 92 6’3 é4 95 é6

N
" = arg min > L(fo(xi),ys)
1=1

— L(fo(x1),¥1)
/ AN

predicted ground truth

(2

Source: Isola, Torralba, Freeman



| earning parameters

Squared loss with single-variable network:

: (y f(X))Z ..........................
1 .........................................

= > (y = o(wx + b))’

oL oL

Want: derivatives — , —

73

ow o0b

—Xample source:

Roger Grosse



Computing derivatives with the chain rule

Given: L == (y — o(wx + b))?

Writing out the layers explicitly: N OL _ 0LOt 9z
Z=WwWX+Db ow 0t 0z 0w
t = o(z)
L==(y—t)
=50 =)

4

—xample source: Roger Grosse



Computing derivatives with the chain rule

oL 0 r1 ] oL

0 11
aW aW > —(y—o(wx + b)) % = % [E (y —o(wx + b))z]

= (y — + b 0 b = b 0 b

= (v~ o(wx + b)) o (y = o(wx + b)) = (y = o(wx + b)) = (y = o (wx + b))

= (y —o(wx + b))o’'(wx + b) % (wx + b) = (y —o(wx + b))o'(wx + b) aa—b (wx + b)
= (y—o(wx+b))o'(wx + b)x = (y —a(wx + b))o'(wx + b)

Note: For each of these derivatives, you’ll have to compute many things multiple times!

lgs

—xample source: Roger Grosse



/0

L imitations to this approach

® |nefficient! Lots of redundant computation
® \\e’ll also need to extend this to multivariable functions

* Next lecture: backpropagation



Representational power

1 layer”? Linear decision surface.

2+ layers? In theory, can represent any function! (if it was

infinitely wide with infinite data)
— Simple proof by M. Nielsen

http://neuralnetworksanddeeplearning.com/chap4.html

» But ISsue Is efficiency: very wide two layers vs narrow
deep model? In practice, more layers helps.

Source: Isola, Torralba, Freeman


http://neuralnetworksanddeeplearning.com/chap4.html

Backup Slides



Sigmoid vs. Softmax

Softmax outputs a probability distribution over all predicted classes:

X Out
3 [OR7 25
1.75 ROLRMAR \ 0.21 Probability
Ry o2 4 0.005 distribution
ZK eZj .
0.5 _ 7= | 0.06_
Input vector Output vector

Sigmoid — not a probability distribution:

X Out
— 3 7 0.957]
1.75 Sigmoid 10,85 Not a probability
/ distribution
By 1 0.12
05 ttet 062

Input vector Output vector



Example: perceptron

y = o(Wx)
L1 —
— Y
L) —>

Example source: http://playground.tensorflow.org

30


http://playground.tensorflow.org

Example: multilayer perceptron (MLP)

y = c(W®max (0, Wx))

Example source: http://playground.tensorflow.org

31


http://playground.tensorflow.org

Example: multilayer perceptron (MLP)

2D vector 4 "hidden” units
Dl =
« [} D
L}
il

Example source: http://playground.tensorflow.org 5



http://playground.tensorflow.org

Example: multilayer perceptron (MLP)

What does this unit do?

2D vector 4 “hidden” units

Example source: http://playground.tensorflow.org -



http://playground.tensorflow.org

