# Lecture 24: Image forensics

#### Announcements

- Final project guidelines are on webpage.
- Sign up for a presentation time slot here.
- PS9 (on NeRF) will be released by tomorrow.
  - Shorter than usual (to give you time for the project).

### Fake images in the news





### Text-to-image models make it easy







"Catholic Pope Francis wearing Balenciaga puffy jacket in drill rap music video, throwing up gang signs with hands, taken using a Canon EOS R camera with a 50mm f/1.8 lens, f/2.2 aperture, shutter speed 1/200s, ISO 100 and natural light, Full Body, Hyper Realistic Photography, Cinematic, Cinema, Hyperdetail, UHD, Color Correction, hdr, color grading, hyper realistic CG animation --ar 4:5 --upbeta --q 2 --v 5."

#### But image manipulation also has a long history



Abraham Lincoln?



John C. Calhoun

#### But image manipulation also has a long history



From Forrest Gump, 1994

















his associates simply found photos of athletes on the Internet and either used those photos or used software such as PhotoShop to insert the applicants' faces onto the bodies of legitimate athletes. For example, as set forth in greater detail below, CW-1 explained to McGLASHAN that he would create a falsified athletic profile for McGLASHAN's son, something he told McGLASHAN he had "already done ... a million times," and which would involve him using "Photoshop and stuff" to deceive university admissions officers.

FBI affidavit on 2019 college admissions scandal







## Detecting fake images



#### New image manipulation methods are emerging every day



#### The challenge of fake image detection



### Hard to directly use supervised learning!



### Strategy #1: physical models

## Self-consistent lighting direction

Fake photo



Real photo



### Specular reflections



[Johnson and Farid, 2007]

Strategy #2: low-level imaging properties

#### JPEG artifacts

- Cameras vary in how they do JPEG compression.
- When you quantize a floating point numbers:
  - Some do round(), others do floor() or ceil()
- If a photo seems to have *both* kinds of quantization, it's probably a fake: e.g., a composite from images taken by different cameras!









[Agarwal and Farid, "JPEG Dimples", 2017]

### Detecting duplicated image regions





← amount of JPEG compression

- Traditional inpainting methods copy-and-paste image patches.
- Detect near-duplicated patches.
- But sensitive to postprocessing operations, like compression.

[Popescu and Farid, 2004]

### Strategy #3: learned anomaly detection

Instead of hand-crafting cues, can we learn to detect "anomalous" images, and flag suspicious images?











Inconsistent

Consistent

### Predicting metadata consistency



CameraMake: Apple

CameraModel: iPhone 4s

ColorSpace: sRGB

ExifImageLength: 2448
ExifImageWidth: 3264

Flash: Flash did not fire

FocalLength: 107/2

WhiteBalance: Auto

ExposureTime: 1/2208

• • •



CameraMake: NIKON CORPORATION

CameraModel: NIKON D90

ColorSpace: sRGB

ExifImageLength: 2848
ExifImageWidth: 4288

Flash: Flash did not fire

FocalLength: 18/796

WhiteBalance: Auto ExposureTime: 1/30

• •

#### Same white balance?





Input





Prediction

Ground truth

Photo source: <u>TheOnion.com</u>



Input





Prediction

Ground truth

Photo source: <u>TheOnion.com</u>



Input





(Hays & Efros 2009)





Prediction

Ground truth

### Another approach: learning joint embeddings



Make: NIKON

Model: NIKON D3200

Flash: Fired

Exposure Time: 1/500

Focal Length: 30.0mm

Exposure Program: Aperture Scene

Capture Type: Standard

••

### Learning Joint Embeddings



Make: NIKON

Model: NIKON D3200

Flash: Fired

Exposure Time: 1/500 Focal Length: 30.0mm

Exposure Program: Aperture

Components Configuration: YCbCr

•••



"Make: NIKON, Model: NIKON

D3200, Flash: Fired, Exposure

Time: 1/500, Focal Length: 30.0mm, Exposure Program:

Aperture, Components

Configuration: YCbCr, Scene Capture Type: Standard, ..."

### Learning Joint Embeddings



"Make: NIKON, Model: NIKON

D3200, Flash: Fired, Exposure

Time: 1/500, Focal Length: 30.0mm, Exposure Program:

Aperture, Components

Configuration: YCbCr, Scene Capture Type: Standard, ..."

## Learning Joint Embeddings



## Linear classification evaluation





Radial distortion

Image manipulation

## Linear classification evaluation



Radial distortion estimation (Dresden dataset)

Image splice detection (CASIA I dataset)

## Video forensics as anomaly detection



e.g., "deepfake" videos

[Feng, Chen, Owens, 2023]

## Data representation



Raw pixels? Just as hard as generation!

Instead: self-supervised feature space.

## Data representation



Synchronization model of [Chen et al., 2021]

#### Self-supervised feature learning





Self-supervised feature learning Audio-visual anomaly detection Time Target features Likelihood **Autoregressive Prediction** Audio-visual Synchronization Model Distribution Discrete Feature Predicted time delays activations over delays

features



**Stage #1:** Learning audio-visual synchronization feature sets:

$$S(i,j) = \frac{\exp\left(\phi\left(V_{i},A_{j}\right)\right)}{\sum_{k=i-\tau}^{i+\tau} \exp\left(\phi\left(V_{i},A_{k}\right)\right)}$$



**Stage #2:** Learning autoregressive model on self-supervised audio-visual feature sets:

$$p_{\theta}(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N) = \prod_{i=0}^{N-1} p_{\theta}(\mathbf{x}_{i+1} | \mathbf{x}_1, \cdots, \mathbf{x}_i)$$



#### Results

#### FakeAVCeleb [Khalid et al., 2021]



Limitation: only works for out-of-sync lip motions (not face swaps)



#### Robustness to postprocessing



Strategy #4: supervised learning



[Wang et al., "Image Splice Detection via Learned Self-Consistency", 2018]







Warp detector



## Real-or-fake classification



## What moved where?



## What moved where?





Manipulated Photo



Flow Prediction



Suggested "Undo"



Original Photo



Manipulated vs. Original



Undo vs. Original



Manipulated Photo



Warp Prediction



Suggested "Undo"



Original Photo



Suggested "Undo"



Manipulated Photo

## Similar approaches for "deepfakes"



Create lots of deepfake videos, then learn to detect them.

[Rossler et al., "FaceForensics++", 2019]

## New challenges on the horizon

# Celeb-DF: A New Dataset for DeepFake Forensics

Yuezun Li<sup>1</sup>, Xin Yang<sup>1</sup>, Pu Sun<sup>2</sup>, Honggang Qi<sup>2</sup> and Siwei Lyu<sup>1</sup>

<sup>1</sup>University at Albany, State University of New York, USA <sup>2</sup>University of Chinese Academy of Sciences, China

[Li et al., "Celeb-DF", 2020]

## The forensics generalization problem

#### New architectures & datasets



StyleGAN2 [Karras 2019]

#### New models



Cascaded refinement networks [Chen & Koltun 2017]

Lots of potential issues for "universal" detector: dataset bias, domain adaptation, etc.

## CNN-generated images are surprisingly easy to spot... for now



Sheng-Yu Wang



Oliver Wang



Richard Zhang



Andrew Owens



Alexei Efros



https://peterwang512.github.io/CNNDetection



#### Dataset of CNN-generated fakes



#### Dataset of CNN-generated fakes



GANs

















Perceptual

loss

Low-level vision











**ProGAN** (Karras 2018)

**StyleGAN** (Karras 2018)

BigGAN

(Brock 2019)

CycleGAN (Zhu 2017)

StarGAN (Choi 2018)

GauGAN (Park 2019)

refinement (Chen 2017)

the dark (Chen 2018)

Seeing in

resolution (Dai 2019)

(Anonymous 2018) (Rossler 2019)

# How well do classifiers generalize?

ProGAN



- Train with 720K images from 20 LSUN categories
- JPEG + Blurring data augmentation

# How well do classifiers generalize?

Synthesized images from another CNN



Real "target" images





# How well do classifiers generalize?

Images the CNN actually makes



Images the CNN should make



ProGAN detector → Real vs. fake?

# Surprising amounts of generalization





## Generalization example



http://whichfaceisreal.com [West and Bergstrom 2019]

Detection accuracy: 93% AP

"Out-of-distribution" dataset:

- StyleGAN faces
- 1024x1024 JPEGs
- Use minimal preprocessing:
   take 224x224 center crop

# Generalization to StyleGAN3



A model trained on a model from 2019 (ProGAN) generalizes to a (similar) model in 2021 (StyleGAN3)

### Implications

- Suggests CNN-generated images have common artifacts
- These artifacts can be detected with a simple classifier!
- But what are these artifacts?

Average Fourier magnitude (after high pass filtering)



Example from literature: checkerboard/aliasing artifacts [Xu Zhang et al. 2019]

# Need online "open world" detection



Source: [Epstein et al., "Online Detection of Al-Generated Images", 2023],

See also [Girish et al., "Towards discovery and attribution of open-world gan generated images", 2021]

#### What's real and what's fake?



["The suspicious video that helped spark an attempted coup in Gabon" Washington Post. 2020]

#### Challenges on the horizon

- Lots of ways to make fake images.
- If we know what methods were used, there's a good chance we can succeed.
- But it's hard to capture all of them!
- False positives are still a huge problem.
- So are postprocessing operations, like cropping and compression.
- Need methods that can handle unseen models.
- Alternative approaches: watermarking, signatures, etc.

#### Open-ended discussion

- How susceptible are people to fake images?
- Is there any hope of detecting "most" fake images?
- Under what situations might it be important and/or feasible?
- How do we deal with false positives?