ecture 22: Embodied vision



loday

® Formalisms for intelligent agents (environment, state, action, policy)
® |mitation learning
® Reinforcement learning
® Policy gradient algorithm
® QQ-learning
® [his is just a very high-level overview

® See Sutton & Barto [http://incompleteideas.net/book/RLbook2018.pdf| for more.
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http://incompleteideas.net/book/RLbook2018.pdf

THE INTERNATIONAL WEEXLY JOURNAL OF SCIENCE

At last — a computer program that
can beat a champion Go player PAGE 484

ALL SYSTEMS GO

[Silver et al., 2016]

Agent observation raw pixels

3:4Y

Indoor map overview

[Jaderberg et al. 2018]
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The whole purpose of visual perception, in humans, Is to
Mmake good motor decisions.

“We move In order 1o see and we see in order to move” — J. J. Gibson

Source: Isola, Torralba, Freeman



Intelligent agents

AL SN

Observations Actions

e )

Source: Isola, Torralba, Freeman



Intelligent agents

Actions
7

Environment ‘/

f . St, At —7 St41

Source: Isola, Torralba, Freeman



How to represent a state”? How to represent policy”?

state: pixels! policy: action classifier

4>

Source: Isola, Torralba, Freeman



Can we use supervised learning”?

Training data

{$1,y1}
{mzyyz}
{$3,y3}

— lLearner

f* = argmmZE

rfer

8

— f: X =Y

Source: Isola, Torralba, Freeman



Imitation learning

(supervised learning, applied to learn policies)

Training data

(from an expert)

{s1,0a1}]

{s9,a5} —> Learner | — T .S — Q

{83,0a3}

T = arg min Z L(m(s;),a;)

Source: Isola, Torralba, Freeman
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mitation learning

S a
AW B Learner
s
:lzﬂ:g:l d3 ib4+ } Objective
Aoden W J m(s) = softmax(gy(s))
EleWe T E
S miaie L(a,7(s)) = Lor(a,m(s))
wom oA R 0f3 ach N — T
Eg%%zg y Hypothesis space
iz.gze: Convolutional neural net
“w man'm  0-0 ixc3 } Optimizer
WAwEs R
B E mE y, Stochastic gradient descent
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~rom Images to actions

Al 1 |
([ &
4 Iy R

& M (m) | :> :>
auxiliary measurements, e.g. speed. Measurements ) = Action
11l il 4 Y a
Y W
i i A
+ a goal capturing expert’s intentions, Command C ) a
e.g. “Turn right at the next intersection.” (or vector to goal) | UL | €(¢)

[See Codevilla et al., “Bmd-to-end driving via conditional imitation learning”, 2018]



End-to-end Driving via
Conditional Imitation Learning

Felipe Codevilla, Matthias Mueller, Alexey Dosovitskiy, Antonio Lopez, Vladlen Koltun

Submitted to ICRA 2018






ExXploiting other knowledge

Segmentation Albedo

® Can use mid-level representations like
depth, motion.

® Or do transfer learning from pretrained net

[See Zhau et al., “Does computer vision matter for action?”, 2019]



(“Return”)

BeNavIor ..o
“Trajectory”)

Reinforcement learning

Ny
»
.....
N
N
N

%

a1

{7-27 RQ} —>
{7-37 RB}
..

L.earner

Policy

m™T:s —a

T — {Sl,al,SQ,CLQ, .. }

What’s a good policy”? (what’s the learning objective®)
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Reinforcement learning

PE=mN

Observations Actions
Rewards

o ]

| earn a policy that takes actions that maximize reward

16

Source: Isola, Torralba, Freeman



Imitation learning Reinforcement learning

No training data, have to play around
and collect the data yourself

+ No need for labeled data

+ Can learn things no human knows
how to do

- Less Instructive

- No curriculum

- Have to explore

Hand-curated training data

+ Instructive examples

+ Follows a curriculum

- EXpensive

- Limited to teacher's knowledge

17
Source: Isola, Torralba, Freeman



Reinforcement learning

State, Reward Actions
St+15 Tt (¢

\ Environment ‘/

f . St, At —7 St41
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Reinforcement learning

Policy

T .St — Q¢ \ o
State| Reward Actions Markov decision process (MDP)
St11,7T¢ A+

\ / Reward 7 ‘ O ‘ O
Action @ ‘( ‘/\‘&‘JA
SR S A S

time

State S ‘

A sample from the MPD is called a trajectory 7 — (SO, aop,To,S1,41,71, .. )

19 Source: Isola, Torralba, Freeman



Reinforcement learning

Policy
/ TSt T Gt \ Trajectory T = (SQ,CLQ,TQ,Sl,al,Tl,...)

State, Reward Actions
St+15T¢ A

Environment

f D Sty At —7 St41

\ / Discounted rewards R(T) — Z Vtrta S (07 1>
t=0

L earn a policy that takes actions that maximize expected reward

" =argmaxE, .| R(7)]

20 Source: Isola, Torralba, Freeman



Reinforcement learning

lLearner
Objective
R(7)
Data
Hvpothesis space

Neural network

Optimizer

Can’t, in general, differentiate through the environment!

/

Source: Isola, Torralba, Freeman



Environment is not differentiable! — How to optimize”

Policy gradients: Run a policy for a while. See what actions led to high rewards.
Increase their probabllity.

raw pixels hidden layer

<0 X moving UP
N £
kv’f‘.‘«;\‘

-
Song V4

[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]

22 Source: Isola, Torralba, Freeman



Policy gradients: Run a policy for a while. See what actions led to high rewards.
Increase their probabillity.

UP DOWN -® DOWN -® DOWN -® UP »® WIN
DOWN’. UP »® UP »® | OSE
DOWN"DOWN* DOWN* UP ~® | OSE
DOWN». UP »® UP -® WIN

[Adapted from Andrej Karpathy http://karpathy.github.io/2016/05/31/rl/]

Source: Isola, Torralba, Freeman



Eventual return

e +10 points

i O points

Policy output Action ' +10 points

........ ¥ +100 points

o Up 5.5,,.-“ ............... » +10 points
Down

"B 110 points

m(a|s) = probability of choosing action a given state s

24 Source: Isola, Torralba, Freeman



Fventual return

e 0 points
| , N O points

Policy output Action P
% +10 points
------- > O points

m Down I o P
DOWH E.‘E'-‘:%%':'::‘:: ------------------ } O pO”’]tS

0 1 ’

"B 110 points

m(a|s) = probability of choosing action a given state s

29 Source: Isola, Torralba, Freeman



Policy gradient

e \Nant to take derivatives of expected reward w.r.t. the policy parameters.

0 _ 0
SErml B = 2 [ p(rio)R()dr

— [ p(r16) | 55 loeto(r10)| Rir)a

[0 |
Seny | g OB (TIO)R(T)

® [o actions with high rewards more often, and low rewards less often
e This is called the REINFORCE algorithm.
e [stimate gradients, do gradient ascent

20



Policy gradient

Looks like SGD on policy:

1. Sample a rollout, e.q. play the game with current policy

T = (SOaaOaslvala . '75T7aT)

2. Compute reward, e.g. what was our game score?
T
r(t) = R(s)
t=0

3. Do a gradient deate:

0
0 < 0+ ar(T)%m(aﬂst)

27 Slide adapted from R. Grosse and J. Ba



Approximated via sampling

l

. Action conditional Expected
Policy output |
expected return return
I o) Up — Yy —
I Down
1 0 +10
VoE,r, [R(T)] —E,on, [R(T)V@ log 7T9] < Estimate gradient using REINFORCE

and do gradient descent

28 Source: Isola, Torralba, Freeman



Policy gradient

1. Start with an arbitrary initial policy.

2. Roll out this stochastic policy many times, sampling different random actions
each time.

3. Update your policy to place higher probability on actions that led to higher
returns.

Mathematically, this approximates gradient ascent on policy parameters, so as
to maximize reward.

29 Source: Isola, Torralba, Freeman



Policy gradient

What happens in a rollout”? Recall we're taking a step: E, -, % log(p(7]0))R(T)
glo 6)) ~ 9
o g(p(T 2 59 log g (a¢|st)

All actions become more likely if the reward is high.
Doesn’t do credit assignment.

30 Slide adapted from R. Grosse and J. Ba



How good Is a state”

Value function: expected future reward from starting in s.

V7 (s) = E

EEE FIET IR
P = Pe= P fue P e P B
=10 I N S

e One advantage is credit assignment: we know which state/action was useful.
e Sometimes more sample efficient, and updates have less variance.




How good Is a state-action pair?

® Could we learn the value function and use it to choose actions”
- We need more than that. You'd also need to know the dynamics, I.e.
what state you'd end up with if you took each action.

® [nstead, learn action-value function (or Q function).

Q(s,a) =E ZRt S =S,a; = a

£>0

e Optimal action for a state: argmax (s, a)
a

32 Adapted from R. Grosse and J. Ba



Finding a good Q function

® (Good Q function should satisty a recurrence relation called the
Optimal Bellman Equation:

Quality of state/action pair  Where will | end up”?  What if | take the very best next action?

/ / /

Q*(S,CL) — T(S7a) T f’p(s’\s,a) HE}X Q*(St—l—lgal) ‘ St = 8,0 = Q

33



Finding a good Q function

® Measuring the Bellman error for Q:

r(st,at) + Vmgx Q(St+1,a) — Q(8¢, az)

e Approximate Q with a neural net Q(s, a; 8). For each episode

1. Do the policy induced by Q and get a trajectory:

T = (80,00,70, 51,001,771, .- -)
2. Update the parameters using backprop, minimizing approximation error:
ti = 1(8¢,a¢) + 7 Hax Q(st+1,a;50;-1)

L(Qi) — (ti — Q(St,@t; 97;))2

34



35

Playing Atari games with deep Q-learning

Convolution
v

Convolution
v

Input:

4 |ast frames:
34 x84 x4

5-layer CNN

Fully cgnnected
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OQutput:
Q(s, a) for each action a

¢
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+i+1+0+0+0+-0+0+
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[Mnih et al., “Playing Atari with Deep Reinforcement Learning”, 2013]



Playing Atarl games

100 Training Episodes




Model-based control

® | carn the dynamics of the environment: p(s:4+1 | s, at)

® \Where do | end up In the future if | perform this action”
® |f states are images, we want to predict the future after you do an action



Model-based control

® | carn the dynamics of the environment: p(s:4+1 | s, at)

® \Where do | end up in the future if | perform this action”
® |f states are images, we want to predict the future after you do an action

Designated Pixel

Pushing task SNA (urs

Video prediction

From [Ebert et al., "Self-Supervised Visual Planning with Temporal Skip Connections” 2017]



Intelligent agents
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" \Why vision?
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Why vision®

1. Human-like intelligence (and animal-like), often relies heavily on vision

We already know it works well!

(credit: Johannes Burge)

Source: Isola, Torralba, Freeman



Why vision®
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lmportance of perception

Reinforcement learning

| / Representation

learning

A hypothesis: If vision can give us a
good representation/model of the /
world, then planning and control T
should be easy. |

Yann LeCun’s “cake”

42
Source: Isola, Torralba, Freeman



Next class: recent agdvances in 3D
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