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Lecture 17: Multi-view geometry



Today

• Epipolar geometry 

• Stereo matching

• Image alignment
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PS8: making panoramas

Source: N. Snavely



Recall: homogeneous coordinates

Representing translations:

homogeneous image 

coordinates

Converting back to image coordinates

4Source: N. Snavely



Recall: camera parameters
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Source: N. Snavely

intrinsics rotation translation



Projection matrix

0

=

(in homogeneous image coordinates)
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Source: N. Snavely
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Estimating depth from multiple views



Stereo vision

~6cm ~50cm
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Source: Torralba, Isola, Freeman



1 vs. 2 eyes
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Source: Torralba, Isola, Freeman
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1 vs. 2 eyes

Source: Torralba, Isola, Freeman
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Source: Torralba, Isola, FreemanImage source: wikipedia

Brewster stereoscopeStereoscopic card

https://en.wikipedia.org/wiki/Stereoscope


Depth without objects

12 Source: Torralba, Isola, FreemanJulesz, 1971 



Geometry for a simple stereo system
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Geometry for a simple stereo system
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Geometry for a simple stereo system
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Geometry for a simple stereo system
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Can we estimate Z?



Geometry for a simple stereo system
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Geometry for a simple stereo system
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Geometry for a simple stereo system
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Geometry for a simple stereo system
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Geometry for a simple stereo system
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Source: Torralba, Isola, Freeman
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Geometry for a simple stereo system
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Similar triangles:

T
Z

Solving for Z:

Z = f 
T

XR - XL

Disparity

Source: Torralba, Isola, Freeman



In 3D
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camera 1 camera 2

T

Source: Torralba, Isola, Freeman



Disparity map
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Left image Right image

Second picture is ~1m to the right

Source: Torralba, Isola, Freeman



Disparity map
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Left image Right image

Source: Torralba, Isola, Freeman



Disparity map
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Left image Right image

Source: Torralba, Isola, Freeman



Disparity map
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D(x,y) Z(x,y) =
f

D(x,y)

I(x,y) I’(x,y) = I(x+D(x,y), y)I’(x,y)

Source: Torralba, Isola, Freeman



Finding correspondences
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We only need to search for matches along horizontal lines.

Source: Torralba, Isola, Freeman
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Basic stereo algorithm

For each “epipolar line”
	 For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

Source: R. Szeliski



Computing disparity
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Source: Torralba, Isola, Freeman



Computing disparity
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Semi-global matching [Hirschmüller 2008]

Source: Torralba, Isola, Freeman



Can also learn depth from a single image
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Source: Torralba, Isola, Freeman



General case
• The two cameras need not have parallel optical axes.
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Source: Torralba, Isola, Freeman
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Source: Torralba, Isola, Freeman
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Do we need to search for matches only along horizontal lines?

Source: Torralba, Isola, Freeman
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Do we need to search for matches only along horizontal lines?

Source: Torralba, Isola, Freeman
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It looks like we might need to search everywhere... are there any constraints 
that can guide the search?

Do we need to search for matches only along horizontal lines?

Source: Torralba, Isola, Freeman



Stereo correspondence constraints

O O’

p
p’ ?

If we see a point in camera 1, are there any constraints on where we 
will find it on camera 2?

Camera 1 Camera 2
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Source: Torralba, Isola, Freeman



O O’

p
p’ ?
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Stereo correspondence constraints

Source: Torralba, Isola, Freeman



Some terminology
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O O’

p
p’ ?

Source: Torralba, Isola, Freeman



Some terminology
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O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

Baseline

Source: Torralba, Isola, Freeman



Some terminology
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O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

epipole epipoleBaseline

Source: Torralba, Isola, Freeman



Some terminology
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O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipolar plane: the plane that contains the two camera centers and a 3D point in the world 

Epipole: point of intersection of baseline with the image plane

epipolar plane

Source: Torralba, Isola, Freeman



Some terminology

44

O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipolar plane: the plane that contains the two camera centers and a 3D point in the world 

Epipolar line: intersection of the epipolar plane with each image plane

Epipole: point of intersection of baseline with the image plane

epipolar line epipolar line

Source: Torralba, Isola, Freeman



Epipolar constraint

O O’

p
p’ ?
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epipolar line

We can search for matches across epipolar lines


All epipolar lines intersect at the epipoles

Source: Torralba, Isola, Freeman



Epipolar constraint
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O O’

p
p’

If we observe a point in one image, its position in the other image is constrained to lie 
on the epipolar line.

f(p) = [a, b, c]
How do we get this line? We want a function that, given a point  tells us what this line is:p

such that ax′￼+ by′￼+ c = 0
where . In other words: p′￼ = [x′￼, y′￼] f(p)⊤p′￼ = 0



The fundamental matrix
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O O’

p
p’

F: fundamental matrix

p image point in homogeneous coordinates

It can be shown that our function, , can be written as a matrix multiplication in 
homogeneous coordinates.

f

p⊤F = [a, b, c]



The fundamental matrix
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O O’

p
p’

F: fundamental matrix

p image point in homogeneous coordinates

It can be shown that our function, , can be written as a matrix multiplication in 
homogeneous coordinates. 

f

Source: Torralba, Isola, Freeman

p⊤F p′￼ = 0More concisely:



The fundamental matrix
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O O’

p
p’

Closely related to projection matrix:

p⊤F p′￼ = 0



The fundamental matrix
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O O’

p
p’

Closely related to projection matrix:

(p⊤F) p′￼ = 0

u: a line induced by p

p, p’: image points in homogeneous coordinates

u⊤p′￼ = 0



Example: converging cameras

Figure from Hartley & Zisserman Source: Kristen Grauman



Image rectification
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Source: A. Efros



53

Active stereo with structured light

camera 2

camera 1

projector

camera 1

projector

Source: R. Szeliski[Zhang, Curless, Seitz, 2002]

Easy-to-match pattern Do we really need the second camera?
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CSE 576, Spring 2008 Stereo matching

RGB-D sensors

RGB cameraInfrared projector Infrared camera



Making panoramas

Source: N. Snavely



Making panoramas



What is the geometric relationship 
between these two images?

?



Why don’t these image line up exactly?

Image alignment

Source: N. Snavely



Recall: affine transformations

affine transformation

what happens when we 
change this row?

Source: N. Snavely



Projective Transformations aka 
Homographies aka Planar Perspective Maps

Called a homography 

(or planar perspective map)

Source: N. Snavely



Homographies

Note that this can be 0!

A “point at infinity”

Source: N. Snavely



Homography
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Example: two pictures taken by rotating the camera:

If we try to build a panorama by overlapping them:

Source: Torralba, Isola, Freeman



Homography
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Example: two pictures taken by rotating the camera:

With a homography you can map both images into a single camera:

Source: Torralba, Isola, Freeman



Why does this work?

Image 1

Image 2

Optical Center

How do we map points in image 2 into image 1?

image 1 image 2

3x3 homography

Step 1: Convert pixels in image 2 to rays in 
camera 2’s coordinate system.

Step 2: Convert rays in camera 2’s coordinates to rays 
in camera 1’s coordinates.

Step 3: Convert rays in camera 1’s coordinates to 
pixels in image 1’s coordinates.

intrinsics
extrinsics
(rotation only) Source: N. Snavely



Plane-to-plane homography

image plane in front image plane below
black area

where no pixel

maps to

Source: N. Snavely



Homographies

• Homographies …

– Affine transformations, and

– Projective warps


• Properties of projective transformations:

– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines do not necessarily remain parallel

– Closed under composition

Source: N. Snavely



2D image transformations

Source: N. Snavely



How do we perform this warp?



Image warping

Given a coordinate transformation (x’,y’) = T(x,y) and a 
source image f(x,y), how do we compute a 
transformed image g(x’,y’) = f(T(x,y))?

f(x,y) g(x’,y’)
x x’

T(x,y)y y’

Source: N. Snavely



Forward warping
• Send each pixel f(x) to its corresponding 

location (x’,y’) = T(x,y) in g(x’,y’)

f(x,y) g(x’,y’)
x x’

T(x,y)

• What if a pixel lands “between” two pixels?

y y’

Source: N. Snavely



Forward warping
• Send each pixel f(x) to its corresponding 

location (x’,y’) = T(x,y) in g(x’,y’)

• What if a pixel lands “between” two pixels?

f(x,y) g(x’,y’)
x x’

T(x,y)

• Answer: add “contribution” to several pixels, 
normalize later (splatting)


• Can still result in holes

y y’

Source: N. Snavely



Inverse warping

• Get each pixel g(x’,y’) from its corresponding 
location (x,y) = T-1(x,y) in f(x,y)

f(x,y) g(x’,y’)
x x’

T-1(x,y)

• Requires taking the inverse of the transform

• What if pixel comes from “between” two pixels?

y y’

Source: N. Snavely



Inverse warping
• Get each pixel g(x’) from its corresponding 

location x’ = h(x) in f(x)
• What if pixel comes from “between” two pixels?
• Answer: resample color value from 
interpolated source image

f(x,y) g(x’,y’)
x x’

y y’
T-1(x,y)

Source: N. Snavely



Next lecture: estimating geometry from images


