Lecture 13: Video and temporal models



Announcements

e PS6 due next Weds.
o Project proposal information out
e Rolling deadline, due Nov. 13

e [Jiscussion section: project office hours +
GANS



Project proposal

Due November 13th
Rolling deadline
What we want: 1 page summary of what you'd like to do.

Not worth much of total grade. Graded pass/fail. We just
want to know whether it's an acceptable project.



Project proposa

2 Project ideas

To help you think of projects, we’ve provided a few ideas below. Please note that these
projects only cover a very small portion of the possible things you can do — most involve
reimplementing and extending a paper. We encourage you to propose your own, creative
project ideas, and to use these as a starting point! We may also add new project ideas to this
list in the coming weeks.

Applications of vision. Apply computer vision to a task that’s important to you! We highly
encourage this option if it appeals to you, since it’s often the most fun option. For example,
students in previous EECS 442 classes have applied computer vision to Settlers of Catan,
measured the volume of liquid that could be held by a teacup, and analyzed the coffee coming
out of an espresso machine. Often these projects will involve applying a few different computer
vision models to a task, and analyzing the results.

Image synthesis. Implement a (small) version of a generative image model, such as VQ-
GAN [1] or a diffusion model [2].

Extend an existing image synthesis model. Extend an existing image synthesis model,
such as Stable Diffusion [3] in an interesting way (see here [4] for architecture details).

Video magnification. Implement a motion magnification algorithm, such as the method of
Wadhwa et al. [5]. Try running it on your own videos, too.

Stereo. Implement a system that can estimate depth from a collection of photos using stereo.
An easy-to-implement reference point is Goesele et al. [6].
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Simple video task: action recognition

Making latte art Jaywalking Grooming dog

Analogous to Image recognition. Useful testbed for designing video models.

Examples from the Kinetics dataset [Carreira et al. 2017 - 2019]
/00 human activity classes, 650K 10-sec videos
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Simple model: averaging

% p(making latte art | 1)  + % p(making latte art | 1)  + % p(making latte art | Is)
A

A
A
7

Can’t analyze motion.
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Temporal filtering



Temporal filtering
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Cube size = 128x128x90

Source: Freeman, Torralba, Isola



Videos
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Source: Freeman, Torralba, Isola



Examples of temporal filtering



Temporal median filtering
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Source: Alexei Efros



Background subtraction

Source: Alexei Efros



Finding subtle color variations

* [he face gets slightly redder when blood flows
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Source: D. Hoiem



Amplifying Subtle Color Variations
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Heart Rate Extraction

Peak detection
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Source: D. Hoiem



Recall: sharpening filter
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Magnifying tiny motions

Reconstruction
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Pyramid intensity at each ~ Pandpassed
pixel over time signal and add

back to original
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Source: D. Hoiem



Color amplification

' *r'_ . 00000226

Original Color amplification

| Wu et al. 2012]

Source: [Wadhwa et al., Phase-based Video Motion Processing. SIGGRAPH 2013, Wu et al. SIGGRAPH 2012]



Motion magnification

Original

Wu et al., SIGGRAPH 2012]



[Wadhwa et al., SIGGRAPH 2013]
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Space-time convolutions



3D space-time convolution
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Source: Torralba, Freeman, Isola



3D space-time CNN

Convl(32, 7, 2)

Input

Conv2(32, 5, 1)

Conv3(64, 4, 1)

(64, 64, 64;1) (32, 32, 32; 32)(32, 32, 32; 32) (32, 32, 32; 64) (32, 32, 32; 64)(16, 16, 16; 64) (128)  (24)

[Source: FeatureNet: Machining feature recognition based on 3D Convolution Neural Network]

Source: Torralba, Freeman, Isola



Designing a 3D CNN architecture

2D image CNNs
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Inflated convolutions

2D ResNet block 3D ResNet block
T4 ............................................ T{ ...........................................
3x3 conv 3x3x3 conv
A @ » P A
3x3 conv 3x3x3 conv |

® Can reuse 2D architectures. |Carreira et al. 201 7]
® Pretrain with 2D nets (“inflating” 2D filter to 3D)
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Separable convolutions

3D convolution Separate space/time
T
P T i 1X3x3 conv
3X3x3 conv —p _ 2
T 3x1x1 conv
T
Often works well. Faster and fewer parameters.
3X3X3=27 VS. I3IX3+3=12

33 [Tran et al., 2018], [Xie et al., 2018]



| earned space-time filters
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(7x7x7) I3D conv1 filters, [Carreira & Zisserman 2017]




When do we actually need motion?
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(25 frames) [Carreira & Zisserman 2017]

Adapted from David Fouhey



When do we actually need motion?

Let’s look at these again:

REXING DASH GAM BMW X6 OO0OMI/H 2017/04/06 09:07:37

Making latte art Jaywalking Grooming dog
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When do we actually need motion?

® Single-frame models usually don’t work well.

e But single-image model + temporal pooling often is
surprisingly competitive.

® |n many tasks that use video, time often provides
extra samples, rather than motion.

® [ ater In the course, we’ll see tasks where motion IS

AR o= essential, such as 3D reconstruction.

Photo by H. Edgerton
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Recurrent networks

33



Source: Torralba, Freeman, Isola
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Source: Torralba, Freeman, Isola
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Source: Torralba, Freeman, Isola
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Source: Torralba, Freeman, Isola



Recurrent Neural Networks (RNNS)

Outputs ()

Hidden (—( —(

relel I Jololelel Jelelelel Jelel

r ™1 | ' . = ] L EERR | [ et b
1 . i ecd . pod |ls , - 1
] ‘p ’ # - b oo N -
. ~ 3 : . i . ! : f | 1 - -
B - B5- e - Ha- Hg- Wa -
Byl 1) : | Bt : X o /iU B < T ’ .,~ A8 T g " R oy
" . : — == : g . - i . : [P & .
. : »_I:T = T e | | N 2 ‘:._" | B = == = | - ._7'__7';
= / =1 . B | s | - : :
, i
4," ¢ .




Recurrent Neural Networks (RNNSs)

ouputs y O O O O O C
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Source: Torralba, Freeman, Isola



Recurrent Neural Networks (RNNSs)

outputs 3 () o O O O O O
Hidden h T O O O O Q O
mts x O O O O O O O O

h() — f(h(—), x®)

y" = g(h'")

Source: Torralba, Freeman, Isola
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Recurrent Neural Networks (RNNS)

Outputs
Hidden Recurrent!

INputs

h() — f(h(—), x®)

y") = g(h")

Source: Torralba, Freeman, Isola



Recurrent Neural Networks (RNNSs)

outputs § () ) o O O O O O
Hidden h — T O O O O O O
mts x O O O O O O O O

al¥) = Wh'=1 + UxY) +b
h®) = tanh(a'?)
o) = Vh + ¢

y(t) = softmax(o'?)

Source: Torralba, Freeman, Isola



Deep Recurrent Neural Networks (RNNS)
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Unrolling an RNN
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Backprop In RNNS
oputs vy O O O O O

oy ay® on®  9h® on©
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Source: Torralba, Freeman, Isola



The problem of long-range dependences

oy () B oyt oh®) HhD) Hh(0)
9x©) — oh®) Hh(t-1)  Gh(0) §x(0)

o (Capturing long-range dependences requires propagating information
through a long chain.

e (Old observations are forgotten

b2

e Stochastic gradients become high variance (noisy), and gradients may
vanish or explode

Source: Torralba, Freeman, Isola
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Source: Torralba, Freeman, Isola
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| STMSs

Long Short Term Memory

® A special kind of RNN designed to avoid forgetting [Hochreiter &
Schmidhuber 1995].

® Related to ResNets’ bias Is that state transition is an identity function.

® [his way the default behavior is not to forget an old state. Instead of
forgetting by default, the network has to learn to forget.

e Bit of a complex design. Works well but simpler methods like Gated
Recurrent Unit (GRU) are competitive [Jozefowicz et al. 2015].

Source: Torralba, Freeman, Isola
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[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Source: Torralba, Freeman, Isola


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Neural Network Pointwise Vg@ctor
Layer Operation Transfer

Concatenate

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Source: Torralba, Freeman, Isola


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Ci = Cell state

o/

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Source: Torralba, Freeman, Isola


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ft Jt =0 (Wf’[ht—la$t] bf)

Decide what information to throw away from the cell state.

Forget gate: each element of cell state is multiplied by: N
~71 (remember) or ~0 (forget).

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Source: Torralba, Freeman, Isola


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Forget

It itr'%t Ci = fe x Cr1

Forget selected old information, write selected new information.

59

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Source: Torralba, Freeman, Isola


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

which components to write to

/

it =0 (Wi-lhi—1,2¢] + b;)
C; =tanh(Weg-lhi—1, 2] + bo)

N\

what to write into those components

Decide what new Information to adcglo to the cell state.

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Source: Torralba, Freeman, Isola


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Forget Write new values

It itr'% Ci = ft *Ci—1 + 14 x C}

Forget selected old information, write selected new information.

o1

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Source: Torralba, Freeman, Isola


http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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After having updated the cell state’s information, decide what to output.

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Source: Torralba, Freeman, Isola


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Some uses for RNNs

L Image Captioning
Activity Recognition Sequences in the Output
Visual Sequence  Output Sequences 1n the Input
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Figure from [Donahue et al. 2016]



Problems with RNNs

® Hard to obtain motion information.
® Results in very deep networks (often slow, hard to train)

® Doesn't parallelize well

Depth of network = length of the sequence



Basic transformer model

* Do we really need these sequence models?

* Sequence-to-sequence architecture using only point-wise

processing and attention (no recurrent units or convolutions)

Decoder: predicts next token
conditioned on encoder output and

Encoder: receives entire input oreviously predicted tokens

sequence and outputs encoded

sequence of the same length

Feed Forward Encoder-Decoder Attention

Self-Attention Self-Attention

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, 65
|. Polosukhin, Attention is all you need, NeurlPS 2017 Image source



http://jalammar.github.io/illustrated-transformer/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Self-attention

« Used to capture context within the sequence

Q Q
— L. — 2,
e ) D o . — *> o D o
o £ £ 2 ., 90 C 2 o o £ £ 2 , 0 O D L.
c T P2 T = g s 9 O = T O © <& &5 s O O
- S5 656 S = e = S5 6<% S = 8 =
As we are encoding “it’, we As we are encoding “it", we
should focus on “the animal” should focus on “the street” 66

Image source

Source: S. Lazebnik


https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Self-attention layer 2 [ [

 Query vectors: o- xw, Lr"d““t(j)’ Sum1)
« Key vectors: « = xw, N el
 Value vectors: v - xw, B Y
» Similarities: scaled dot-product attention T ad Y
E, = <Q;5K oor e - QK" /y/D SoftrrEax(T)

(p Is the dimensionality of the keys) S

» Attn. weights: 4 = softmax(£, dim = 1) oo = N .
« Qutput vectors: t t t
K.zszi’jVj Oor v=4av Qfl Q; Q;

Adapted from J. Johnson and S. Lazebnik. One query per input vector



Multi-head attention

* Run » attention models in parallel
on top of different linearly
projected versions of ¢, k. v;
concatenate and linearly project

the results

 |ntuition: enables model to attend
to different kinds of information at
different positions

Source: S. Lazebnik

A —
Scaled Dot-Product l
y

Attention

\V K Q

N

63



Transformer blocks

A Transformer is a sequence

of transformer blocks
 Vaswani et al.: N=12 blocks,
embedding dimension = 512,
6 attention heads
« Add & Norm: residual connection

followed by layer normalization
* Feedforward: two linear layers

with ReLUs in between, applied Add & Norm
iIndependently to each vector Multi-Head

« Attention is the only interaction Attention

between inputs! W YNIE

Source: S. Lazebnik


https://arxiv.org/pdf/1607.06450.pdf

Positional encoding

* To give transformer information about ordering of tokens, add
function of position (based on sines and cosines) to every input

position

70
Embedding dimension = Image source



https://distill.pub/2016/augmented-rnns/

Transformer architecture: Zooming back out

Encoder

Add & Norm

Add & Norm
Multi-Head
Attention

y

Positional e o

Encoding
Input
Embedding

INputs

Source: S. Lazebnik

Qutput
Probabilities

Decoder

Add & Norm
Feed
Forward
Add & Norm
Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Fositional
$ e Encoding
Output
Embedding

Qutputs
(shifted right)

A. Vaswani et al., Attention is all you need, NeurlPS 2017



https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Language translation results

English German Translation quality English French Translation Quality
B BLEU 4 B BLEU
| GNMT (RNN) ConvS2S (CNN) SliceNet (CNN) Transformer GNMT (RNN) ConvS2S (CNN) Transformer
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html 72

Source: S. Lazebnik


https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Different ways of processing sequences

RNN
h1 h2 h3 > h4
A A A A
X1 X2 X3 X4

Works on ordered sequences

Pros: Good for long sequences:

After one RNN layer, ht "sees’

the whole sequence

Con: Not parallelizable: need to
compute hidden states
sequentially. Very deep.

Con: Hidden states have
limited expressive capacity

Source: S. Lazebnik

Convolutional network

n4 h, N, hy
A A >< A A
X1 X2 X3 X4

Works on multidimensional grids

Pro: Each output can be
computed in parallel (at training
time)

Con: Bad at long sequences:
Need to stack many conv layers
for outputs to “see” the whole
sequence

Transformer

m m
W e w
= N w

m m m
> Lo L] |
= [ [N} w
m m m
el R R NN
N = N w
m
X 0O |»

Works on sets of vectors

Pro: Good at long sequences:
after one self-attention layer,
each output “sees” all inputs!
Pro: Each output can be
computed in parallel (at training
time)

Con: Memory-intensive. O(N*2)
without modifications. 73



Preview for later in the course: Vision transformer (ViT)

« Split an image into patches, feed linearly projected patches into

standard transformer encoder
* With patches of 14x14 pixels, you need 16x16=256 patches to represent 224x224 images

Vision Transformer (ViT) Transformer Encoder

/\ A
Class .
Bird MLP @
Ball [
Head

Car [ MLP ]

Norm
Transformer Encoder
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A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR+2021

Source: S. Lazebnik


https://arxiv.org/pdf/2010.11929.pdf

Next class: representation learning



