University of Michigan
EECS 442: Computer Vision
Fall 2023. Instructor: Andrew Owens.

Problem Set 6: Image Synthesis

Posted: Wednesday, October 11, 2023 Due: Wednesday, October 25, 2023
Submission instructions:
e Canvas:
— Colab notebook (.ipynb) containing solutions and visualizations for 6.1 and 6.2.
Part of these will be some small written questions. Please put your answers in the
TODOs in the notebook and don’t submit an additional file to GradeScope. Before
submitting, please make sure to rename the file to <unigname>_<umid>.ipynb.

e Gradescope
— .pdf version of Colab notebook (conversion instructions here). If this instruction
does not work, look into this additional method. For your convenience, we have
included the PDF conversion script at the end of the notebook.

The starter code can be found at:
https://drive.google.com/file/d/1fxR__xZ1CP04sN-fp_HO8CNFImDO8WiR/view?usp=sharing

Problem 6.1 (12 points) Implement piz2pix

In this problem set, we will implement an image-to-image translation program based on
pix2pix [1]. We will train the pix2pix model on the edges2shoes dataset [I, 2] to translate
images containing only the edges of a shoe, to a full image of a shoe. The edges are automatically
extracted from the real shoe images.

Some example edge/image pairs are shown in Figure 1

The pix2pix model is based on a conditional GAN (Figure 2). The generator G maps the
source image x to a synthesized target image. The discriminator takes both the source image
and predicted target image as its inputs, and predicts whether the input is real or fake.

0. (Optional, 0 Points) We will first build data loaders for training and testing. For the
training process, we will use a batch size of 4. During testing, we will process 5 images

in a single batch, so that we can visualize several results at once. Please complete the
Edges2Image class and fill in the TODOs in that cell.

Hint: please use the DataLoader from torch.utils.data

1. (6 points) Next, we will define the network based on the architecture from the paper.
The generator follows a U-net architecture, where the activations from the encoder are

https://umich.instructure.com/courses/632378
https://www.gradescope.com/courses/586289
https://docs.google.com/document/d/1FvAuB-7NW6jZ8XzSQfkILOAQBdL7mGAXVln8a2ns2Gw/edit?usp=sharing
https://docs.google.com/document/d/1QTutnoApRow8cOxNrKK6ISEkA72QGfwLFXbIcpvarAI/edit?usp=sharing
https://drive.google.com/file/d/1fxR__xZlCPO4sN-fp_HO8CNFImDO8WiR/view?usp=sharing
https://phillipi.github.io/pix2pix/

Figure 1: Example sketch-image pairs from the edges2shoes dataset. The edges are extracted with

HED edge detector [3] from the raw shoe images. A model trained on this dataset can also work with
user-provided sketches.

fake . real

T X

Figure 2: Conditional GAN for image translation.Training a conditional GAN to map edges—photo.
The discriminator, D, learns to classify between fake (synthesized by the generator) and real edge,
photo tuples. The generator, G, learns to fool the discriminator. Unlike an unconditional GAN, both
the generator and discriminator observe the input edge map. The Pokémon images shown here come
from Pokémon Images Dataset [4, 5]. You can also train a GAN using this dataset and generate
your own Pokémon, if you’d like! Here’s a link to the dataset: https://github.com/zaidalyafeai/
zaidalyafeai.github.io/tree/master/pix2pix/datasets

concatenated with the inputs to the decoder (Figure 3). We have included a toy U-net
example in the Colab notebook.

U-Net

- LT

Figure 3: U-net architecture.

https://github.com/zaidalyafeai/zaidalyafeai.github.io/tree/master/pix2pix/datasets
https://github.com/zaidalyafeai/zaidalyafeai.github.io/tree/master/pix2pix/datasets

As a reminder: let Ck denote a Convolution-BatchNorm-ReLU layer with k filters. All
convolutions are 4 x 4 spatial filters applied with padding 1, and stride 2, except for
the last 2 layers in the discriminator, which have stride 1. Convolutions in the encoder
and the discriminator downsample the input by a factor of 2, while convolutions in the
decoder upsample the input by a factor of 2.

(a) (3 points) Generator architectures

The U-Net encoder-decoder architecture consists of:
U-Net encoder:
C64-C128-C256-C512-C512-C512-C512-C512

U-Net decoder:
C512-C512-C512-C512-C256-C128-C64-C3

As a special case, batch normalization is not applied to the first and last layers
in the encoder. All nonlinearities in the encoder are Leaky Rel.Us, with slope
0.2, while the nonlinearities in the decoder are ReLLUs. After the last layer in the
decoder, a convolution is applied to map to the number of output channels, which
is 3 in our problem, followed by a tanh function.

Please complete the generator class in the starter code.
Hint: you can use torch.cat to concatenate the decoder and the encoder inputs

(b) (3 points) Discriminator architectures

The discriminator architecture is:
C64-C128-C256-C512

As an exception to the above notation, batch normalization is not applied to the
first and last layers. All nonlinearities are Leaky ReLUs, with slope 0.2. After the
last layer, a convolution is applied to map to a 1-dimensional output, followed by a
sigmoid function.

Please complete the discriminator class in the starter code.

Hint: Using torch.nn.functional.leaky relu for Leaky ReLU.

. (1 point) For optimization, we’ll use the Adam optimizer. Adam is similar to SGD with
momentum, but it also contains an adaptive learning rate for each model parameter. If
you want to learn more about Adam, please refer to the deep learning book [6]. For our
model training, we will use a learning rate of 0.0002, and momentum parameters 5, = 0.5
and f2 = 0.999. Please set up G_optimizer and D_optimizer in the train function.

. (4 points) Now, we will implement the training routine and start training the models.

The conditional GAN (cGAN) loss function can be written as:

Lecaan(G, D) ZlogD iy i) Zlog (1 — D(x, G(x)). (1)

We also add an L1 loss to the total total loss function:

LG Z lys — G(@i)]]1] (2)
=1

3

Each iteration, we first train discriminator D by using the average loss of real image and
fake images. We then train generator G by using the following loss:

G* = arg mGin mngCGAN(G,D) + A\L11(G). (3)

You will train two different models: one with only L1 loss, the other with Equation 3
and A = 100. Train the network for at least 20 epochs (10 epochs is enough for the
model with only L1 loss). You are welcome to train longer, though, to potentially obtain
better results.

Please complete the following tasks:

e In the specified text cell of the Colab notebook, comment on the difference between
the translated images obtained from L1 only and L1 + ¢cGAN.

e Show the history of the generator’s BCE and L1 losses and the discriminator’s loss
vs. iteration of the ¢ = 100 model in 3 separate plots.

e Show the history of the generator and the discriminator L1 loss vs. iteration of the
L1 only model in 2 separate plots.

e In the specified text cell of the Colab notebook, comment on the difference among
the history of loss plots for the L1 only and L1 + ¢GAN models. Specifically, what
are the behaviors of BCE and L1 losses for the ¢ = 100 model?

Note: training each epoch will take less than 2 minutes. If your training takes significantly
longer than this, there is likely a mistake in your implementation.

4. (Optional) After the pix2pix model has been trained on this dataset, we can apply the
trained generative model to translate any user-provided sketch to a synthetic image. A
shoe sketch drawn by a GSI and the synthesized shoe image are plotted in Figure 4.

Figure 4: Left: a sketch drawn by a GSI. Right: the synthesized shoe image.
Please draw a shoe in the sketch panel we provide in the Colab notebook and translate

it to a shoe image with the trained model. Feel free to post your generated image to a
Piazza thread.

Problem 6.2 (Optional, 0 points) Style Transfer

In this problem, we will implement the loss functions for the neural artistic style transfer
method of Gatys et al. [7]. We take two images as input: one that defines the content and

(a) Content image (b) Style image (c) Result

Figure 5: Style transfer. We manipulate an image (a) to match the artistic style of (b), producing
the result (c).

another that defines the style (Figure 5). We have provided five paintings that define the
styles, and images COCO that define the content [3].

Two losses are needed to accomplish style transfer: the content loss and the style loss. Both
losses are calculated between the input image (the same as content image or a random noise)
and the reference image (style/content).

1. (Optional) First, we will implement the content loss. This loss encourages the generated
image to match the scene structure of the content image. We will implement this loss as
the squared ¢ distance between two convolutional feature maps. Given a feature map of
input image F* and the feature map of content image F*“, both of shape (C, H, W), the
content loss is calculated as follows:

‘CC:Z(FCCz] chz,]) . (4)

(NN}

2. (Optional) Next, we will implement the style loss. This loss encourages the texture of
the resulting image to match the input style image. We compute a weighted, squared #o
distance between Gram matrices for several layers of the network.

The first step is to calculate the Gram matrix. This is given to you. Given a feature
map F of size (C, H,W), the Gram matrix G € R“*% computes the sum of products
between channels. The entries k,[of the matrix are computed as:

G, = Z FriiFiij- (5)

i?j

The second step is to compare the generated image’s Gram matrix with that of the input
style image. Define the Gram matrix of input image feature map and style image feature
map of at the I*" layer as G*! and G*, and the weight of the layer as w'. Style loss at

the I*" layer is:
_ U)l Z GZE l Gs l (6)
where w! is the weight of layer . The total style loss is a sum over all style layers:

Lo=> L. (7)
l

Please write the code for style loss, given the Gram matrix code.

3. (Optional) Finally, we will try varying the layer used to compute the content loss.
Try several different layers [= 0,1,2,...,12 and report which one gave you the best
qualitative results.

4. (Optional) Upload any of your own images or try out other images in the datasets and
perform style transfer. We encourage you to post your art to the Piazza thread!

Acknowledgements. Part of the homework dataset and the starter code are taken from a
previous EECS 498 class taught by Justin Johnson, which itself was adapted from CS231n

at

Stanford University by Fei-Fei Li, Justin Johnson and Serena Yeung. Please feel free to

similarly re-use our problems while crediting these other classes.

References

[1]

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation
with conditional adversarial networks. In CVPR, 2017.

A. Yu and K. Grauman. Fine-grained visual comparisons with local learning. In Computer
Vision and Pattern Recognition (CVPR), Jun 2014.

Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In Proceedings of IEEE
International Conference on Computer Vision, 2015.

Pokemon images dataset. https://www.kaggle.com/kvpratama/
pokemon-images-dataset.

zaidalyafeai.github.io. https://github.com/zaidalyafeai/zaidalyafeai.github.io/
tree/master/pix2pix/datasets, 2018.

Tan Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic
style. arXiv preprint arXiv:1508.06576, 2015.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
FEuropean conference on computer vision, pages 740-755. Springer, 2014.

https://www.kaggle.com/kvpratama/pokemon-images-dataset
https://www.kaggle.com/kvpratama/pokemon-images-dataset
https://github.com/zaidalyafeai/zaidalyafeai.github.io/tree/master/pix2pix/datasets
https://github.com/zaidalyafeai/zaidalyafeai.github.io/tree/master/pix2pix/datasets

