University of Michigan
EECS 442: Computer Vision
Fall 2023. Instructor: Andrew Owens.

Problem Set 5: Scene Recognition

Posted: Wednesday, October 4, 2023 Due: Wednesday, October 11, 2023
Submission instructions:
e Canvas:
— Colab notebook (.ipynb) containing solutions and visualizations for 5.1(a-e). Before
submitting, please make sure to rename the file to <unigname> <umid>.ipynb.

e Gradescope:
— .pdf version of Colab notebook (conversion instructions here). If these instructions
do not work, look into this additional method. For your convenience, we have
included the PDF conversion script at the end of the notebook.

The starter code can be found at:
https://drive.google.com/file/d/1FRzeBgbh89DURjgwOVr2K1WZqL4qfEFx/view?usp=sharing

Please see GPU Tips at the end of this document to better understand how to efficiently use
GPUs for this homework set (and all future homeworks that require GPUs). tldr: your code
will run very slow if you run out of GPU hours early and you have to train your models on
CPUs. Please follow the tips we provide to avoid this!

We recommend editing and running your code in Google Colab, although you are welcome to
use your local machine instead.

Problem 5.1 Scene Recognition

In this problem set, you will train a CNN to solve the scene recognition problem, i.e., the
problem of determining which scene category a picture depicts. You will train two neural
networks, which we call MiniVGG and MiniVGG-BN. MiniVGG is a smaller, simplified version
of the VGG [2] architecture, while MiniVGG-BN is identical to MiniVGG except that we added
batch normalization layers after each convolution layer.

You will train the neural networks on the MiniPlaces dataset'. We’ll use 90,000 images for
training, 10,000 images for validation, and the remaining 10,000 images for testing. Sample
images from MiniPlaces dataset (along with their categories) are shown in Figure 1. Below
is an outline for your implementation. For more detailed instructions, please refer to the
notebook.

(a) (2 points) We often train deep neural networks on very large datasets. Because it is
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Figure 1: Sample images from MiniPlaces dataset.

impossible to fit the whole dataset into the RAM, loading the data one batch at a time
is a common practice. We also often need to preprocess the data, which includes common
preprocessing steps like normalizing the pixel values, resizing the images to have a consistent
size, and converting numpy arrays to PyTorch tensors. As the first step of this problem set,
please fill in the indicated part for building data loaders with the specified data preprocessing
steps (for the specific preprocessing you need to perform, please see the comments in the
provided notebook). You may also find the PyTorch tutorial® on data loading to be helpful.

(b) (3 points) Construct the MiniVGG and MiniVGG-BN models. Make sure the neural networks
you build have the same architectures as the ones we give in the notebook before you start
training them.

(c) (3 points) Implement the training and validation loops. For the training loop, you will
need to implement the following steps: i) compute the outputs for each minibatch using the
neural networks you build, ii) calculate the loss, iii) update the parameters using the SGD
optimizer (with momentum). Please use PyTorch’s built-in automatic differentiation, rather
than implementing backprogagation yourself. The validation loop is almost identical to the
training loop except that we do not perform gradient update to the model parameters; we’ll
simply report the loss and accuracy. Please see the notebook as well for further instructions.

(d) (1 point) Train the networks and visualize training and validation accuracy history for
MiniVGG and MiniVGG-BN using the code we provide in the notebook. Comment on the effect
of batch normalization. Please leave your comments in the text block we provide at the end of
Step 4 section in the notebook. Note: training each neural network will take about 25
minutes.

2https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
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(e) (1 point) If the correct label is within the top_k predicted classes according to the network
output scores, we count the prediction by the neural network as a correct prediction. Measure
Top-1 and Top-5 accuracy on the test set (i.e. the probability that the true class appears as
the most likely class, and within the Top-5 most likely respectively). To pass the test, both
neural networks should have Top-5 accuracy above 55%.

Problem 5.2 Residual Networks (Optional)

We will now create a simplified version of the ResNet [1], which we will use to solve the scene
recognition problem. To make the implementation easier, we will perform downsampling
outside of the residual blocks, using strided convolutions. We have provided a description of
the network in Fig. 2, and we have given you a partial implementation. Your job will be to
complete it.

(a) (Optional, 0 points) Implement the residual block. Each block applies two convolutions
and uses a residual connection. We will implement this as a class ResidualBlock, which is
parameterized with the number of channels.

(b) (Optional, 0 points) Complete the implementation of the ResNet. Your task will be to add
the initial layers of the network, and insert the residual blocks.

(¢) (Optional, 0 points) Train the model. Your Top-5 accuracy should be at least 55% after 20
epochs of training (i.e., after 20 full passes through the training data).

(d) (Optional, 0 points) Add extra residual blocks to the network, and measure the improvement
in accuracy.
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Figure 2: Simplified ResNet. You will implement a simplified ResNet. The network (right) reuses
the residual block (left) with different numbers of channels, at each spatial scale.



1 GPU Tips

For the remainder of the class, we will be using GPUs with Google Colab. We use Colab, since
we believe that it is the best possible option (given the fact that high quality GPUs are very
expensive). However, there are a number of challenges due to the limits that Colab puts on
GPU usage for free accounts. To help you get some information on this and make the most
use of the free limits we have compiled a list of best practices to follow.

Colaboratory or simply Colab is part of the Google suite of products. Put simply, Colab is a
free Jupyter notebook environment that runs entirely in the cloud. You can read more about
it here: https://colab.research.google.com/. We use Colab with Python environment
and to speed up model training we will be using a very important feature of Colab which is
GPU access.

Colab usually provides K80 GPU for free accounts. Very rarely you’ll get a T4, P100 or maybe
even V100, which are much faster. Colab has time and usage limits for GPU access and the
rules for these limits are vague so we have to be careful using them. The general observation
is that you start off with a fixed (4 to 8hr, could be lower) bank. Once you exhaust that, you
will not longer be able to use GPU for upto 24hrs. Once the counter resets, you get lower
hours of usage each time. So how do we maximize our free GPU resources?

(1) Use CPU for debugging

The majority of the implementation in most of the assignments can be completed in CPU; you
should only switch to GPU once you are confident about your code and ready to train your
finals models. The notebook we give you might connect to a GPU runtime by default. You can
change between CPU and GPU instances using Runtime — Change Runtime Type; this resets
the notebook backend, so you'll need to rerun all cells after switching instance types. You will
also need to change device = torch.device(’cuda’) to device = torch.device(’cpu’)
Please make sure you don’t have any .cuda() statements but rather .to(device)

(2) Use other personal Gmail accounts

Google provides Colab for all accounts and hence you can use your personal accounts to access
Colab GPU too. Just share the notebook from you UMich drive with your personal drive and
access it from there. This was you effectively have twice (or more) the free limits. Though
please note that Google might have fraud detection if you make too many spam accounts.

Enable cell execution notifications Colab can notify you of completed executions even if you
switch to another tab, window, or application. You can enable it via Tools — Settings —
Site — Show desktop notifications (and allow browser notifications once prompted) to check it
out. This is helpful when training models so you don’t leave GPU connected and idle for long
times.

(3) Debugging tips for GPU

RuntimeError: CUDA device-side assert triggered

Do not rely on the line where this error is raised. Even the error traceback says this:


https://colab.research.google.com/

RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be
asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH _BLOCKING=1

The stack trace might be incorrect. For better debugging, re-run your code as
CUDA_LAUNCH_BLOCKING=1 python script.py

or add

import os
os.environ["CUDA_LAUNCH BLOCKING"] = 1

at the top of your code (temporarily) for debugging. The traceback you get now will point
you to the actual line where the error occurs.

(4) Non-Colab options
We highly recommend using Colab. However, there are several other options.

One option is to use UM CAEN GPU compute. You can find instructions here: https://docs.
google.com/document/d/1UuGEfBfQ_yXq8EOgXad80M6gJKUNex ImQnJVeK1SnRPI/edit7usp=sharing.
In our experience, this approach is also less reliable, so we recommend using Colab when
possible. Also, since the problem sets are designed for Colab, running them here will re-

quire minor modifications, which we’ve described in the document. If you have a GPU in

your local machine and can set it up to use within Jupyter notebooks, you can use it to

run the notebooks. You can also connect Colab to a local runtime with GPU. Instructions

here: https://research.google.com/colaboratory/local-runtimes.html. Please note

that the instructors will not be able to help debug environment setup and code issues on
non-Colab systems.

(5) Colab Pro

Google offers paid premium upgrades: Colab Pro and Pro Plus which are $10/month and
$50/month respectively. These upgrades have access to faster GPUs and for longer. If you
need more access (especially during final projects) you can consider these options. Please
note that buying premium Colab is not mandatory and the course will not offer
any financial compensation for upgrading. All assignments will be thoroughly tested to
ensure that it can completed within the limits of free Colab resources. In fact, payments are
blocked for UMich Google accounts. You can buy Pro for your personal accounts if needed.
For students who would like to use this (optional) service, but are unable to afford it, we have
been provided with a small amount of funding from the CSE DEI office. Please send the course
staff a private message over Piazza or email if you would like to learn more about this option.
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