University of Michigan
EECS 442: Computer Vision
Fall 2022. Instructor: Andrew Owens.

Problem Set 4: Backpropagation

Posted: Wednesday, September 27, 2023 Due: Wednesday, October 4, 2023
Submission instructions:
e Canvas:
— Colab notebook (.ipynb) containing solutions and visualizations for 4.1(b),
4.1(c) and 4.2. Before submitting, please make sure to rename the file to
<uniqname>_<umid>.ipynb.

e Gradescope
— Written solutions for 4.1(a)

— .pdf version of Colab notebook (conversion instructions here). If this instruction
does not work, look into this additional method. For your convenience, we have
included the PDF conversion script at the end of the notebook.

The starter code can be found here.

We recommend editing and running your code in Google Colab, although you are welcome to
use your local machine instead.

Problem 4.1 Understanding backpropagation

Recall that we can represent a neural network as a computation graph, which allows us to
compute its gradients in a systematic way. The following diagram is an example of the equation

f(z,y,2) = (x+y)z. The corresponding code for the forward and backward of this diagram is
also shown below.

(D

H—{(*)

@41
X—(1)
@ ! f(x,y, 2)

Figure 1: Computation graph for f(x,y,2) = (z + y)z



https://umich.instructure.com/courses/632378
https://www.gradescope.com/courses/586289
https://docs.google.com/document/d/1FvAuB-7NW6jZ8XzSQfkILOAQBdL7mGAXVln8a2ns2Gw/edit?usp=sharing
https://docs.google.com/document/d/1QTutnoApRow8cOxNrKK6ISEkA72QGfwLFXbIcpvarAI/edit?usp=sharing
https://drive.google.com/file/d/1ixH5Y94h48t3fzDmrWEf0Khk1ssCfM-V/view?usp=sharing

1 def f(x, y, z):

2 ###forward pass###
3 P =X +y

4 L=p*x z

6 ###backward pass###

7 grad_L = 1

8 grad_z = grad_L P

9 grad_p = grad_L z

10 grad_x = 1
1

11 grad_y = grad_p

*
*
grad_p *
*
12 return L, (grad_x,

grad_y, grad_z)

Sometimes one piece of data is used as input to multiple operations in a computation graph.
In such cases, you can modify the graph to include an explicit copy operator that returns
multiple copies of its input to make logic cleaner. You can compute separate gradients for all
the copies at first. When you meet the copy operator, just take the sum of separate gradients.
The computation graph of the equation f(x,y,2) = (z + y)(y + z) is shown in Figure 2. The
modified version of computation graph with copy node is shown in Figure 3. We also include
the code for this computation graph with copy node.

—)

fix,y, 2)

Toplel

Figure 2: Computation graph for f(x,y,z) = (x +y)(y + 2)

y1 E /é\

4 N
O X—(0)
o F ()]

L N f(x, y, 2)

Figure 3: Computation graph with copy node

1 def f(x, y, z):

2 ###forward pass###
3 yl =y

4 y2 =y

5 p =x + yl

6 q =z + y2

7 L=p=*gqg

9 ###backward pass###
10 grad_L =1
11 grad_p = grad_L * q



12
13
14
15

16

18

grad_q =
grad_x =
grad_yl =
grad_z =
grad_y2 =
grad_y =
return L,

grad_L * p
grad_p * 1

grad_p * 1

grad_q * 1

grad_q * 1

grad_yl + grad_y2

(grad_x, grad_y, grad_z)

(a) (1 point) Given the input ¥ = [xg, 21, z2], W = [wo, w1, w2, w3], draw a computation graph

for f(&, W) =

1
1+exp(—(wozotw1 /z1 —waze+ws))

Note: Please use the following operations: +, X, —,+1, x(—1), exp, %

(b) (1 point) Please implement the code for forward and backward pass of computation

graph in (a).

(¢) (2 point) Please implement the code for forward and backward pass of computation
graph shown below.

M-1)

x(-1)

A

exp

OO

» X m+g

—
k.

(0

A A
“ oD
L.

exp

PP

<£> (%)
>
¥
-
=
o

—(—

Figure 4: Computation graph for problem

1/n

4.1 (c).

f(x, v, 2)



Problem 4.2 Multi-layer perceptron

In this problem, you’ll train a two-layer neural network (a multi-layer perceprton) to recognize
objects in tiny images. The model and codebase will be very similar to the linear classifier
that you trained in PS3. However, instead of providing you with the formula for the gradients,
you will calculate them yourself using backpropagation.

Our network will have two fully connected layers (i.e. linear layers), and a softmax layer to
perform classification. As in PS3, we’ll train the network to minimize cross-entropy loss. The
network uses a ReLLU nonlinearity after the first fully connected layer. In other words, the
network has the following architecture:

1) input, 2) fully connected layer, 3) ReLU, 4) fully connected layer, 5) softmax.

More concretely, for an image x, we compute the unnormalized class probability (scores),
s = (s1, 82, ..., 5¢), as follows:

s = Wy relu(Wlx + b1) + bo, (1)

where C' is the total number of classes and W;, b; are the parameters of the fully connected
layers.

The softmax loss, L;, for a single image with label y, can be calculated as,

Sy —maxy (sk)

Li(S, y) = —log ZC . e8j—maxy(sk)
j=

This softmax loss has been provided for you already in part (a).

airplane E.V‘\ V..:h..
automobile Eﬂﬂﬁhaﬁ
ot Emall NS ¥ EEE
- EFEGHESEEEsP
oo TRV P 09 TR
g [HESESBPIE R
ro I I N 2 O N B
horse !.mﬂ'-!!m
o e e EO R -
truck d"h’giﬂ'

Figure 5: The CIFAR-10 dataset, which we’ll be classifying in this problem. [1, 2]

The outputs of the second fully-connected layer are the scores for each class. You should not
use a deep learning library (e.g., PyTorch) for this problem: instead, you will implement it
from scratch.

(a) (2 points) Implement the fully connected and ReLU layers. Softmax layer has already
been implemented in the provided code.


https://www.cs.toronto.edu/~kriz/cifar.html

Layer reference:

e Fully connected layer:

y=Wx+b (3)
e ReLU:
x, x>0
vy= { 0, otherwise (4)

(b) (1 point) Finish implementing the SoftmaxClassifier class. The structure has been
mentioned above.

Hint: It might be helpful to use the function np.random.normal.

(¢) (1 point) Set the model hyperparameters (learning rate, lIr_decay, batch_size) by yourself
and run the given code. You will get full points if you obtain at least 45% accuracy on the
test set.

(d) (1 point) Improve your optimization gradient descent method by adding momentum.
Implement SGD_Momentum function and set up the remaining model hyper-parameters same as
what you used for (c), then run the given code.

Hint: Recall that this learning procedure has the following update rule.

v Bv +nVeL(9)
0 60—V

where 7 is the learning rate, § is a scalar in range [0, 1), 6 are the network parameters, VyL(0)
is the gradient of the loss with respect to the parameters, 1 is the learning rate, and v is
velocity vector (initialized as 0).

(e) (0.5 point) Run the code provided and print out test accuracy in Colab Notebook. The
test accuracy of SGD and SGD Momentum model should be at least 45%.

(f) (0.5 point) Plot and compare the training and validation accuracy, using 1) gradient
descent alone, and 2) SGD Momentum. Which model trains more quickly? Is the ultimate
validation accuracy different? Report your observation in Colab.



(g) (advanced, optional) Add L2 regularization, also known as weight decay. Apply the
regularization only to the weight matrices in the fully connected layers (not to the biases).
Your code should be added to the SoftmaxClassifier class from 4.2(b). Specifically, add a
loss:

Lreg = A ([W1]* + W), (5)

to the parameters 6, where A is a constant that represents the relative importance of the
regularization. For this problem, set A = 0.01. Your test accuracy should be at least 46% if
implemented correctly.

(h) (advanced, optional) Train the model after adding the L2 regularization on the weight
matrices (with the same training setup as 4.2(d)) and report the test accuracy.

(i) (advanced, optional) Plot and compare the training and validation accuracy for Softmax-
Classifier with and without L2 regularization. How does the gap between training accuracy
and validation accuracy change after adding L2 regularization?

(j) (advanced, optional) Choose better hyperparameters, and run the training code. You
will get full points if you obtain at least 50% test accuracy (the higher accuracy is due to the
improved performance from regularization).

Acknowledgements. Part of the homework and the starter code are taken from a previous
EECS 442 class taught by David Fouhey and Justin Johnson, which itself was adapted from
CS231n at Stanford University by Fei-Fei Li, Justin Johnson and Serena Yeung. Please feel
free to similarly re-use our problems while similarly crediting us.

References

[1] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images.
University of Toronto, 2009.

[2] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEFE transactions on pattern analysis and
machine intelligence, 2008.



