University of Michigan
EECS 442: Computer Vision
Fall 2023. Instructor: Andrew Owens.

Problem Set 3: Introduction to Machine Learning

Posted: Wednesday, September 20, 2023 Due: Wednesday, September 27, 2023
Submission instructions:
e Canvas:
— Colab notebook (.ipynb) containing solutions and visualizations for 3.1 and 3.2. Be-
fore submitting, please make sure to rename the file to <unigname>_<umid>.ipynb.

e Gradescope
— .pdf version of Colab notebook. For your convenience, we have included the PDF
conversion script at the end of the notebook.

The starter code can be found at:
https://colab.research.google.com/drive/1YhQluWxZ_hGZLI9AYF-Qc-Vsd8ZM-iBua?usp=
sharing

We recommend editing and running your code in Google Colab, although you are welcome to
use your local machine instead.

Problem 3.1 Nearest Neighbor Classification

In this problem, we will implement the k-nearest neighbor algorithm to recognize objects
in tiny images. We will use images from Imagenette [3], a small, easy-to-classify subset of
ImageNet [2] (Figure 1). The code for loading and pre-processing the dataset has been provided
for you.

Note: There is a DEBUG flag in the starter code that you can set to True while you are
debugging your code. When the flag is set, only 20% of the training set will be loaded, so
the rest of the code should take less time to run. However, before reporting the answers to
questions, please remember to set the flag back to False, and to rerun the cells! There is also
an option to run the code with a different image size, which you are welcome to experiment
with (again, please set this back to the default before submitting!).

https://umich.instructure.com/courses/632378
https://www.gradescope.com/courses/586289
https://colab.research.google.com/drive/1YhQluWxZ_hGZL9AYF-Qc-Vsd8ZM-iBua?usp=sharing
https://colab.research.google.com/drive/1YhQluWxZ_hGZL9AYF-Qc-Vsd8ZM-iBua?usp=sharing

church church French horn French horn parachute
g p e - -

golf ball church

oy *"\\“ﬁ
\ULPT”‘C -

parachute parachute
LN

cassette player
1 "

golf ball
3

parachute

Iy d

cassette player

Figure 1: A sample of images from Imagenette [3], a small subset of ImageNet [2]

(a) For the class KNearestNeighbor defined in the notebook, please finish implementing the
following methods:

i.

ii.

iii.

(1 point) Please read the header for the method compute_distance_two_loops and
understand its inputs and outputs. Fill the remainder of the method as indicated in the
notebook, to compute the L2 distance between the images in the test set and the images
in the training set. The L2 distance is computed as the square root of the sum of the
squared differences between the corresponding pixels of the two images.

Hint: You may use np.linalg.norm to compute the L2 distance.

(1 point) It will be important in subsequent problem sets to write fast vectorized code:
that is, code that operates on multiple examples at once, using as few for loops as
possible. As practice, please complete the methods compute_distance_one_loops which
computes the L2 distance only using a single for loop (and is thus partially vectorized)
and compute_distance no_loops which computes the L2 distance without using any
loops and is thus fully vectorized.

Hint: |z —y|? = [[a[2 + |]y]|? — 22Ty

(1 point) Complete the implementation of predict_labels to find the k nearest
neighbors for each test image.

Hint: It might be helpful to use the function np.argsort.

(b) (0 points) Run the subsequent cells, so that we can check your implementation above.
You will use KNearestNeighbor to predict the labels of test images and calculate the accuracy
of these predictions. We have implemented the code for £k = 1 and £ = 3. For k£ = 1, you
should expect to see approximately 29% test accuracy.

(¢) (1 point) Find the best value for k using grid search on the validation set: for each value
of k, calculate the accuracy on the validation set, then choose the highest one. Report the
highest accuracy and the associated k in the provided cell below in the notebook. Also, please
run the code that we’ve provided which uses the best k to calculate accuracy on the test set,
and to see some visualizations of the nearest neighbors.

(Optional, 0 points) Run the provided cells below to see the effects of normalization on the
accuracy.

(d) (2 points) Instead of finding the most similar images based on raw pixels, we obtain
better performance using hand-crafted image features. We’ll use a simplified version of the
Histogram of Oriented Gradients (HOG) features [1]. To compute these features, you will:

i. Compute the orientations of the gradients by filling in the compute_angles function.
Use modulo for angles that exceed 180 degrees so that all angles are in the range of [0,
180 deg].

Hint: You can use np.gradient to compute the image gradients.

ii. Create a histogram of edge orientations by filling the compute_hog function. Weigh
each edge’s vote based on its gradient magnitudes. Each edge votes for one bin that its
orientation falls in. You can make use of math.floor () to find the index of the bin.

iii. (0 points) Perform block normalization across the histogram (provided in starter code)

Please read the descriptions in the starter code and fill in the code blocks. Please also run the
cells below to test your code. You should expect slightly lower accuracy with this simplified
HOG than that with raw pixels. Our implementation obtains about 3% lower accuracy.

Note: We implement HOG in a simplified way, so the accuracy using HOG is worse than
using raw pixels.

(e) (Optional, 0 points) For reference, we have provided code that computes full HOG
features, using a library function. These features should obtain significantly higher accuracy
(42% in our implementation).

Problem 3.2 Linear classifier with Multinomial Logistic (Softmax) Loss

In this problem, we will train a linear classifier using the softmax (multinomial logistic) loss
(Equation 2) for image classification (Figure 1), using stochastic gradient descent.

(a) (3 points) Estimating the loss and gradients. Complete the implementation of the
softmax_loss_naive function and its gradients using the formulae we have provided, following

its specification. Please note that we are calculating the loss on a minibatch of N images. The
inputs are (x1,91), (X2,¥2), ...(Xn, yn) where x; represents the i-th image in the batch, and y;
is its corresponding label.

We first calculate the scores for each object class, i.e. the unnormalized probability that the
image is of a particular class. We’ll denote the scores for a single image as si,so, ...,s¢
where C' is the total number of classes, and compute them as, s = Wx;. The softmax loss for
a single image, L; can be defined as,

e’vi

Li(s,y) = —log W (1)
=1

The total loss £ for all images in the minibatch can then be calculated by averaging the losses
over all of the individual examples:

LW =]1VZL @)

Caution: When you exponentiate large numbers in your softmax layer, the result could be
quite large, resulting in values of inf. To avoid these numerical issues, you can first subtract
the maximum score from each scores as shown below:

5y —Mmaxy (sk)

C -
Zj:l S —max (sk)

L; = —log (3)

Gradients We provide the formulae for the gradients, g—vj%,, which will also be returned by
softmax_loss_naive:

IL; e5y; —Mmax (sk)

oWy, (chl e5j—maxy (s)) *)
aLZ esj'frnaxk(sk) .
o, (chl esjman(Sk)) T, JFYi (5)

As described in the notebook, after implementing this, please run the indicated cells for loss
check and gradient check and make sure you get the expected values.

(b) (3 points) For the LinearClassifier class defined in the notebook, please complete the
implementation of the following;:

i. Stochastic gradient descent. Read the header for the method train and fill in the
portions of the code as indicated, to sample random elements from the training data to
form batched inputs and perform parameter update using gradient descent. (Loss and
gradient calculation has already been taken care of by us) .

ii. Running the classifier. Similarly, write the code to implement predict method which
returns the predicted classes by the linear classifier.

(c) (optional) (i) Show that Equation 1 is equivalent to Equation 3. That is, subtracting
the largest score does not change the result of softmax. (ii) Explain why this may reduce
numerical issues during training. (0 point).

(d) (0 points) Please run the rest of the code that we have provided, which uses LinearClassifier
to train on the training split of the dataset and obtain the accuracies on the training and
validation sets. Observe the accuracy on the test set, which should be around 38%.

(e) Finally, please refer to the visualizations of the learned classifiers. In these visualizations,
we treat the classifier weights as though they were an image, and plot them. You may observe
some interesting patterns in the way that each classifier distributes its weight.

Acknowledgements. Some of the homework and the starter code was taken from previous
CS231n course at Stanford University by Fei-Fei Li, Justin Johnson and Serena Yeung.

References

[1] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE
computer society conference on computer vision and pattern recognition (CVPR’05), volume 1,

pages 886-893. Ieee, 2005.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. 2009.

[3] J. Howard. Imagenette, 2020. URL https://github.com/fastai/imagenette.

https://github.com/fastai/imagenette

