University of Michigan
EECS 442: Computer Vision
Fall 2023. Instructor: Andrew Owens.

Problem Set 2: Signal Processing

Posted: Wednesday, Sept. 13, 2023 Due: Wednesday, Sept. 20, 2023

Submission instructions:
e Canvas:
— Colab notebook (.ipynb) containing solutions and visualizations for 2.1(a-b),
2.2(b), 2.3(a). Also contains written solutions for 2.1(b) and 2.2(a). Before sub-
mitting, please make sure to rename the file to <unigname>_<umid>.ipynb.

e Gradescope:
— .pdf version of Colab notebook. For your convenience, we have included the PDF
conversion script at the end of the notebook.

The starter code can be found at:
https://drive.google.com/file/d/1QN_Pxm1ha-NGUTJJcvyRekuzPmiCYuBs/view?usp=sharing

We recommend editing and running your code in Google Colab, although you are welcome to
use your local machine instead.

Problem 2.1 Image blending
We will use Laplacian pyramids to blend two images.!

Figure 1: Blending with a Laplacian pyramid of 6 levels. Note that your result may look
different than ours.

!This problem was originally based on a problem set by William Freeman and Antonio Torralba.

https://umich.instructure.com/courses/632378
https://www.gradescope.com/courses/586289
https://drive.google.com/file/d/1QN_Pxm1ha-NGUTJJcvyRekuzPmiCYuBs/view?usp=sharing

(a) (5 points) First, we will implement the following functions, which will be used to create
a Laplacian pyramid from an image, and to reconstruct an image from a Laplacian pyramid.

You’ll recall that we’ll need to downsample in the Gaussian pyramid and downsample in the
Laplacian pyramid. In your implementation, use Gaussian kernels for pyramid_upsample and
pyramid_downsample. The kernel for pyramid_upsample should be the same as the one for
pyramid_downsample, except that the kernel itself will be multiplied by 4. (Hint: np.insert

may come in handy when implementing pyramid upsample. Also, scipy.ndimage.gaussian filter
may come in handy when implementing pyramid.upsample and pyramid.downsample - make

sure to read about their "radius” argument in order to set the correct kernel size). Set the
standard deviation of the Gaussian kernel as ¢ = 1.

e pyramid_upsample
e pyramid downsample

Now that you can downsample and upsample your images, you can implement the Gaussian
and Laplacian pyramids. (Hint: remember that you need the highest level of the Gaussian
pyramid to start the Laplacian pyramid. See lecture slide #20 and #32)

e gen gaussian_pyramid
e gen_laplacian_pyramid

Now that you can generate a Laplacian pyramid, you can reconstruct the original image with
it. Use a Laplacian pyramid with 4 levels. Recall from lecture that, to reconstruct the original
image, you repeatedly upsample the Laplacian (starting with the highest level of the Gaussian
pyramid), and then add back the Laplacian from the next level of the pyramid . Please plot
the original image, the Laplacian pyramid, and the reconstructed image. Also, numpy and
cv2 libraries perform a clipping when subtracting images. Try to use a different method for
image subtraction to make sure clipping doesn’t happen!)

e reconstruct_img

(b) (2 points) Implement the function pyramid blend(iml, im2, mask, num_levels). Its
inputs are two images and a binary mask (indicating which pixels to use from each image).
The function produces a Laplacian pyramid with num_levels levels that will blend the two
image inputs. Use your function to blend the images of an orange and an apple that we
provided in the Colab notebook. Plot the blended images with num levels € {1,2,3,4,5,6}.
Please describe the difference between the blended images as the number of levels in the
Laplacian pyramid varies: how does the result change as we increase the number of levels?
Please include this in the cell in the .ipynb file, rather than uploading a separate document
with a written answer.

To obtain color images, you can apply the blending to each color channel independently. In our
implementation, this did not require any extra code (the same code worked on single-channel
and multi-channel images due to numpy broadcasting). However, your implementation may
differ.

(¢) (Optional, 0 points) Use your code to blend your own images. If you would not like
your blending results shown in class, please let us know!

Problem 2.2 Fourier Transform

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

(a) (1 point) Please match the images in the left column of Figure 2 to their corresponding
spectrum visualization in the right column. Write your answers in a colon separated format
(i.e. 1:A; 2:E, ...) in the provided cell in the .ipynb file.

Low High
energy energy

(E)
Figure 2: Images and DFT magnitude.

(b) (2 point) Convolve the provided image with a Gaussian filter: i) using direct convolution
in the spatial domain, and ii) product in the frequency domain (via the convolution theorem).
To perform DFT and inverse DFT, use ££t2 and ifft2 from scipy.fft. For 2D convolution,
we use scipy.signal.convolve2d. Note that doing this in the spatial domain versus the
frequency domain might result in slightly different boundaries. That is okay for this problem!

(c) (Optional, 0 points) Show that complex exponentials are eigenfunctions of linear shift-

invariant systems, i.e., if we convolve a complex exponential f[u] = e/** with a filter g, we
get a complex scaled version: fxg = (a+bj)f.

Problem 2.3 JPEG image compression (Optional, 0 points)

The Central Campus dean has escalated his mysterious feud with the JPEG Standards Com-
mittee: beginning next week, UMich will, by his order, be entirely JPEG-free. Fearing the
huge increase in storage costs from dealing with uncompressed images, U-M ITS has created
a simplified version of JPEG that they plan to deploy to all of their data centers over the
weekend?. They have turned to you for help in completing one small component of the system:
the frequency decomposition.

JPEG image compression takes advantage of the fact that human vision is less sensitive
to high frequency components than to low frequency components. It is therefore possible
to discard some high frequency components without significantly reducing the visual image
quality. In this problem, you will implement a variation of the Fourier transform called the
discrete cosine transform (DCT), and explore it via simple visualizations. After implementing
the DCT, you can plug it into U-M ITS’s new compression system to confirm that the model
leads to significantly smaller images.

Note: Despite the large amount of code we have given you for the JPEG compression system
(and the length of the question), this problem should only require a few lines of code!.

JPEG image compression can be divided into several steps:

1. Break the image into tiny 8 x 8 patches.

2. For each patch, apply the Discrete cosine transform (DCT) to obtain a frequency de-
composition.

3. Quantization: high frequency DCT coefficients with small magnitude are set to zero.

4. Finally, we losslessly compress the quantized DCT coefficients. Since these contain a
large number of zeros, they will compress much more easily than before quantization.
This step uses Huffman coding (see here for more information, if you are interested)

Recovering the image from the encoded file follows the reverse of the above steps:

1. Decoding the Huffman-coded file to get the quantized DCT coefficients
2. De-quantization, where quantized DCT coefficients are scaled back to the actual scale

3. Inverse DCT to reconstruct the image.

By following the above steps, we will compress a grayscale image into a compact encoded file,
examine its new file size, and then decode that compact file and reconstruct the image. You
will implement the DCT transform part (step 1). We have implemented the remaining code
for you. Please note that the amount of code that you’ll need to write is quite
minimal!

Discrete Cosine Transform The DCT is very closely related to 2D Discrete Fourier Trans-
form (DFT), which also describes how much of each frequency component an image contains.

2Currently they have named it MPEG, but, fearing a two-front confrontation with the MPEG Video Com-
mittee, have decided to rename it UMPEG.

http://www.cs.ust.hk/mjg_lib/Classes/COMP3711H_Fall16/lectures/Huffman_Slides.pdf

It produces results that are entirely real-valued (rather than complex), and it is often better-
suited to processing images than the DFT (see Szeliski 3.4.2 for more information) . The 2D
DCT of an M x N matrix A is given by:

M—-1N-1

m2m+1)p 7w2n+1l)g 0<p<M-1
Bpy = apay Z Z An COS Wi cos 5N " 0<g<N -1 (1)

m=0 n=0

The values By, are called the DCT coefficients of A. The inverse 2D DCT is given by:

M—-1N-1

B 72m+1)p 7#@2n+1)g 0<m<M-—1
Apn = Z Zapanpqcos i coS SN 0<n<N_1 (2)

p=0 ¢=0

where in both (2) and (3), a; and oy are given by:

N _{1/m7 p=0 o _{ 1/\/N7 q=0 (3)
PUUVR/M, 1<p<M-1 7" | /2/N, 1<¢<N-1

(a) (optional, 0 points) A core component of 2D DCT is the 2D DCT basis, which is a set
of 2D sinusoidal images with different spatial frequencies of the form cos ”(zgn]\j[r VP cog W(Qg]J\; Vg,
Implement function build 2D _DCT_basis that will compute this basis image set. Visualize

the basis image set using the given code.’

(b) (Optional, 0 points) DCT_2D and IDCT_2D for performing 2D DCT and inverse 2D DCT
are implemented using the built 2D DCT basis, read through the code of these two functions
and make sure you understand them.

(c) (Optional, 0 points) Now, the full JPEG compression system should be ready to run!
In the encoding part of the code, try image compression using different quantization tables,
including dc_only, first_3, first 6 and first_10. Each of these tables discards a different
set of frequency components; tables that discard more components produce a more com-
pressed, but lossier, image. For each quantization table, report the compress ratio (size of the
compressed file divided by size of uncompressed file). Also, please briefly comment on their
reconstructed image quality and file size, and explain why it is the case.

Hint: Take a look at the function load _quantization table and function quantize to un-
derstand what they are doing.

(d) (Optional, 0 points) Read the Quantization and Huffman coding and decoding code
if you want to understand JPEG more thoroughly. Try out the direct Huffman coding the
image pixel values without DCT code block in the end. This will show that Huffman coding
alone is unable to compress the image effectively.

3Remarkably, if you were to use principal component analysis (PCA) to find a low-rank approximation to
a collection of natural images, the results would look very similar to the DCT basis!

